
BLITZ BASIC 2

1. GETTING STARTED
Directory tree 06
Using Ted the Blitz2 Editor 07
Entering Text 07
Highlighting blocks of text 08
The Editor Menus 08
The Blitz File Requester 11
The Compiler Menu 11
Compiler Options 12
Keyboard Shortcuts 13

2. BLITZ BASIC'S 14
My First Program 14
The Print Command 14
Formatted Printing 15
A Simple Variable 15
Blitz2 Operators 15
Boolean Operators 17
Binary Operators 17
Multiple Commands 17
A Simple Loop 17
Nested Loops 18
While..Wend and Repeat..Until 18
Endless Loops 19
Using String Variables 19
Program Flow 20
Jumpin' Around 21
Getting Input from the User 21
Arrays 22

3. TYPES, ARRAYS AND LISTS 23
Numeric Types 23
Default Types 23
The Data Statement 24
Numeric Overflows 24
String Types 25
System Constants 25
Primitive Types Summary 25
NewTypes 26
Arrays inside NewTypes 27
The UsePath Directive 28

1

ARRAYS 29
LISTS 30
Dimming Lists 30
Adding items to a list 30
Processing Lists 31
Removing Items From a List 32
List Structure 32
The Pointer Type 33

4. PROCEDURES 33
Introduction 33
Statements 33
Functions 34
Recursion 35
Accessing Global Variables 36
Procedures Summary 36
Assembler in Blitz Procedures 36

5. ERROR CHECKING&DEBUGGING 37
Compile Time Errors 37
The CERR Directive 37
Runtime Errors 38
The Blitz Debugger 38
The Debugger Gadgets 39
Tracing program execution 39
Resuming Normal Execution 40
Viewing command history 40
Direct Mode 40
Debugger Errors 41

6. BLITZ OBJECTS 41
Blitz2 Objects Overview 42
Object Similarities 42
Object Maximums 42
Using an Object 42
Input/Ouput Objects 43
Object structures 43
The Blitz Primary Objects 44
Screens 44
Windows 44
Gadget and Menu lists 45
Palettes 45
BitMaps 45
Shapes 45
Free Sprite 46

2

Sprites 46
Slices 46
Files 46
Objects Summary 47

7. BLITZ MODE 47
Slice Magic 47
Smooth Scrolling 48
Dual-Playfield 48
Copper Control 48
The Blitter 49
QAmiga Mode 49
Summary 50

8. ADVANCED TOPICS 50
Resident Files 50
Operating System Calls 51
Calling OS Libraries 51
Accessing OS Structures 52
Locating Variables & Labels 53
Constants 53
Conditional Compiling 54
Macros 55
Macro Parameters 56
The '0 Parameter 57
Recursive Macros 58
Replacing Functions with Macros 58
The CMake Character 58
Inline Assembler 59
GetReg & PutReg 59
Assembler in Procedures 60

9. PROGRAMMING & OPTIMIZING 61
Label and Variable Names 61
Style 61
Naming related problems 62
Remarks and Comments 62
Structured programming 62
Keeping things modular 63
Keeping your code readable 64
Optimising Code 64
Algorithms 65
Loops 65
Lookup tables 65
Using Pointers 66

3

Testing Performance 66
Optimising Games 66

10. PROGRAM EXAMPLES 67
Number Guessing 67
Standalone WorkBench progs 68
A Graphic Example 69
Using Menus & File Requesters 70
String Gadgets 71
Prop Gadgets 73
Database Type Aplication 74
The Phone Book Program 74
List Processor for Exec 76
Prime Number Generator 78
Clipped Blits 79
Dual Playtield Slice 80
Double Buffering 81
Smooth Scrolling 82

11. THE DISPLAYLIBRARY&AGA 83
Introduction 83
Initialising 84
Flags used with InitCopList 84
Colors 85
SmoothScrolling 85
DualPlayfield 85
Sprites 86
FetchMode 86
Multiple Displays 86
Advanced Copper Control 86
Display Example 1 87
Display Example 2 88

4

COMMAND REFERENCE SECTION 89 APPENDIX
R-1: PROGRAM FLOW 089 A-1: COMPILE TIME ERRORS 202
R-2: VARIABLE HANDLING 095 General Syntax Errors 202
R-3: INPUT/OUTPUT COMMANDS 098 Procedure Related Errors 203
R-4: FILE HANDLING & IFFINFO 103 Constant Related Errors 204
R-5: NUMERIC&STRING FUNCTIONS 106 Expression Ealuation Errors 204
R-6: COMPILER DIRECTIVES 113 Illegal Errors 204
R-7: ASSEMBLER DIRECTIVES 116 Library Based Errors 205
R-8: MEMORY CONTROL 118 Include Errors 205
R-9: PROGRAM STARTUP 120 Program Flow Based Errors 205
R-10: SLICE COMMANDS 121 Type Based Errors 206
R-11: DISPLAY LIBRARY 125 Condition Compiling Errors 207
R-12: BLITZMODE IO COMMANDS 129 Resident Based Errors 207
R-13: BITMAP COMMANDS 133 Macro Based Errors 207
R-14: 2D DRAWING COMMANDS 135 Array Errors 208
R-15: ANIMATION SUPPORT 137 Interrupt Based Errors 208
R-16: SHAPE HANDLING 137 Direct Mode 209
R-17: BLITTING COMMANDS 141 Select...End Select Errors 210
R-18: SPRITE HANDLING 147 Blitz Mode 210
R-19: COLLISION DETECTION 149 Strange Beast Errors 210
R-20: PALETTE COMMANDS 151 A-2: OPERATING SYSTEM CALLS 210
R-21: SOUND MUSIC & SPEECH 155 EXEC 211
R-22: SCREEN COMMANDS 160 DOS 214
R-23: WINDOW COMMANDS 163 GRAPHICS 218
R-24: GADGET COMMANDS 174 INTUITION 221
R-25: MENU COMMANDS 181 DISKFONT 224
R-26: GADTOOLS COMMANDS 184
R-27: ASL LIBRARY COMMANDS 188 A-3: HARDWARE REGISTERS 224
R-28: AREXX CONTROL 189 Bitplane & Display Control 224
 Command (Action) Codes 193 The Copper 227
R-29: BREXX COMMANDS 198 Colour Registers 228
R-30: SERIAL PORT COMMANDS 200 Glitter Control 228
 Audio Control 231
 Sprite Control 232
 Interupt Control 233
 DMA Control 234
 Amiga CIAs 235

A-4: 68000 ASSEMBLY LANGUAGE236
 68000 Instruction Set 239
 Registers 236
 Addressing 236
 Program Flow 237
 The Stack 238
 Conditional Flags 238
 Conditional Tests 238

5

Directory Tree for Hard Disk users

DH1:-Blitz --program files
 |

|
 --------- Blitzlibs --------------------------- resident files
| |
| |
| |--- amigalibs amiga libraries
| --- otherlibs third party libraries
|
 ---- Developers----------------------------- documentation
| |
| |
| |--- acidlibsrc acid library source code
| |--- amigaincludes system includes
| |--- toolsource developer toolsource code
| |--- userlibdocs does for third party fibs
| |--- userlibprogs test programs for third party fibs
| --- Userlibsource source code for third party fibs
|
|--- Examples
| |--- amigamode
| |--- andrewsdemos
| |--- blitzmode
| |--- marksdemos ;example code
| |--- simonsdemos
| |--- tedsdemos
| --- tools
|
|
 --- Userlibs

1. GETTING STARTED

6

Using Ted the Blitz2 Editor

To enter and compile your programs you need an editor. Blitz2 comes with a text
editor that acts both as an interface to the Blitz2 compiler as well as a standalone
ascii editor (ascii is the computer standard for normal text)

The horizontal and vertical bars are called 'scroll bars'. when the file you are
editing is longer or wider than the screen you can position your view of the file by
dragging these bars inside their boxes with the left mouse button.

At the bottom of the screen is information about the cursor position relative to the
start of the file you are editing as well as a memory monitor that lets you know the
largest block of memory available in your Amiga system.

Using the left mouse button you can drag the Blitz2 screen up and down just like any
other Amiga screen as well as place it to the back with the front to back gadgets at
the top right of the screen.

Entering Text

The editor can be treated just like a standard typewriter, just go ahead and type,
using the return key to start a new line.

The small box that moves across the screen as you type is called the cursor. Where
the cursor is positioned on the screen is where the letters will appear when you type.

By using the arrow keys you can move the cursor around your document, herein to
be known as the file.

If you place the cursor in the middle of text you have already typed you can insert
letters just by typing, the editor will move all the characters under and to the right of
the cursor along one and insert the key you pressed into the space created.

The DEL key will remove the character directly under the cursor and move the
remaining text on the line left one character to cover up the gap.

The key to the left of the DEL key will also remove a character but unlike the DEL key
it removes the character to the left of the cursor moving the cursor and the rest of the
line to the left.

The TAB key works similar to a typewriter moving the cursor and any text to the right
of the cursor right by so many columns.
The RETURN key as mentioned allows you to start a new line. If you are in the
middle of a line of text and want to move all text to the right of the cursor down to a

7

new line use shift RETURN, this is known as inserting a carriage return.

To join two lines of text use the Amiga keyboard combination.

Using the shift keys in combination with the arrow keys you can move the cursor to
the very start or end of a line and up and down a whole page of the document.

By pointing with the mouse to a position on the screen you can move the cursor
there by clicking the left mouse button.

See keyboard shortcuts at the end of this chapter for other keys used with the Blitz2.

Highlighting blocks of text

When editing text, especially programs you often need to operate on a block of text.
Position the mouse at the start or end of the block, hold down the left mouse button
and drag the mouse to highlight the area you wish to copy, delete, save or indent.
While holding down the button you can scroll the display by moving the pointer to the
very top or bottom of the display.

You can also select a block with the keyboard, position the cursor at the start of the
block of text, hit the F1 key then position the cursor at the end of the text and hit F2.

A special feature for structured programmers is the Amiga-A key combination, this
automatically highlights the current line and any above or below that are indented the
same number of spaces.

The Editor Menus

Using the right mouse button you can access the menu system of the Blitz2 editor.
Following is a list of features accessible from these menus in order from left to right.

The PROJECT Menu

NEW
Kills the file you´re editing from the Amiga's memory. If file has been changed since it
was last saved to disk a requester will ask you if you really wish to NEW the file.

LOAD
Reads a file from disk. A file requester appears when you select LOAD which enables
you to easily select the file you wish to edit. See later in this chapter for a full
description of using the file requester.

SAVE
Writes your file to disk. A file requester appears when you select SAVE which

8

enables you to easily select the file name you wish to save your file as. See later
in this chapter for a full description of using the file requester.

DEFAULTS
Changes the look of the Blitz2 editor. You can edit the palette, select the size of font
and tell the system if you wish icons to be created when your files are saved. The
scroll margins dictate how far from the edge of the screen your cursor needs to be
before Blitz scrolls the text.

ABOUT Displays version number and credits concerning Blitz2.
PRINT Sends your file to an output device usually PRT: the printer device.

CLI
Launches a command line interface from the editor, use the ENDCLI command to close
this CLI and return to the Blitz2 editor.

CLOSEWB
Closes WB if it is currently open. This option should only be used if you are running
very short on memory as closing WB can free about 40K of valuable ChipMem.

QUIT
Close the Blitz2 editor and returns you to workbench or CLI.

The EDITMenu

COPY
Copies a block of text that is highlighted with the mouse or fl-f2 key combination to
the current cursor position. The F4 key is another keyboard shortcut for COPY.

KILL Deletes a highlighted block of text (same as shift F3 key).

BLOCKTODISK Saves a highlighted block of text to disk in ascii format.

INSERTFROMDISK
Loads a file from disk and inserts it into the file you are editing at the cursor position.

FORGET De-selects a block of text that is selected (highlighted).

INSERTLINE Breaks the line into two lines at the current cursor position.

DELETE LINE Deletes the line of text the cursor is currently located on.

DELETE RIGHT Deletes all text on the line to the right of the cursor.

9

JOIN Places the text on the line below the cursor at the end of the current line.

BLOCK TAB Shifts all highlighted text to the right by one tab margin.

BLOCK UNTAB Shifts all highlighted text to the left by one tab margin.

The SOURCE Menu

TOP Moves the cursor to the top of the file

BOTTOM Moves the cursor to the last line of the file.

GOTO LINE Moves the cursor to the line number of your choice.

The SEARCH Menu

FIND Will search the file for a string of characters.

NEXT Positions the curosr at the next occurrence of the Find-String entered using the
FIND menu option (as below).

PREVIOUS
Will position the curosr at the last occurrence of the Find: String entered
using the FIND menu option (as below).

REPLACE Will carry out the same function as discussed in the FIND requester below.

After selecting FIND in the SEARCH menu the following requester will appear:
Type the string that you wish to search for into the top string gadget and click on
NEXT. This will position the cursor at the next occurrence of the string, if there is no
such string the screen will flash.

Use the PREVIOUS icon to search backwards from the current cursor position.

The CASE SENSITIVE option will only find strings that have same letters capitalized,
default is that the search will ignore whether letters are caps or not.

To replace the find string with an alternate string click on the box next to REPLACE:
and type the alternate string. REPLACE will search for the next occurrence of the Find:
string, delete it, and insert the Replace: string in it's place.
REPLACE ALL will carry on through the file doing replaces on all occurrences of
the Find: string.

10

The Blitz File Requester

When you select load or save, Blitz2 places a file requester on the screen.

With the file requester you can quickly and easily find the file on a disk.

Clicking on the top left of the window or on the CANCEL gadget at the bottom right will
cancel the file requester returning you to the editor.

The slider at the right enables you to scroll up and down through the files in the
currently selected directory (drawer).

Double clicking on a file name (pointing to the name and pressing the left mouse button
twice) will select that file name.

Clicking on a <DIR> will change to that directory and list the files contained in it.

Clicking on PARENT will return you to the parent directory.

Clicking on drives adds a list of all drives, volumes and assigned devices
to the top of the file list so you can move into their directories.

You can also enter path and file names with the keyboard by clicking on the boxes next
to PATH: and FILE: and entering the suitable text. Then Click on the OK gadget.

CD is a special command used when programming in Blitz2 to change the editors
current directory to that specified in the path name. When you select CLI or launch a
task from the editor its root directory will be that selected by the CD gadget.

Last feature of Blitz2 FileRequester is the ability to size its window, dragging bottom
right of the window with the left mouse button you can see m more files at one time.

The Compiler Menu

The following is a discussion of the extra options and commands available with Ted
when used in Blitz2 programming mode. The Compiler menu includes all the commands
needed to control the Blitz2 compiler.

COMPILE/RUN Compiles your Blitz2 program to memory and if there are no errors
run the program.

RUN Runs the program if it has already been successfully compiled to memory.

11

CREATE FILE Compile your Blitz2 program to disk as an executable program.

OPTIONS See next page for details about Blitz2 compiler options.

CREATERESIDENT Will create a 'resident file' from the current file. A resident is a
file including all constants and macro definitions as well as newtype definitions.
By removing large chunks of these definitions from your code and creating a resident
(pre- compiled) file a dramatic increase in compile speed can be attained.

VIEW TYPE
Allows you to view all currently resident types. Click on the type name and its
definition will be shown. Subtypes can be viewed from this expansion also.

CLI ARGUMENT
Enables you to pass parameters to your program when executing it from the
Blitz2 editor environment just as if you had run the program from the CLI.

CALCULATOR
Allows you do to calculations in base 2, 10 and 16. Precede hex values with
$ and binary with %. It also supports multi levels of parenthesis.

RELOAD ALL LIBS
Will read all files from BLITZLIBS: back into Blitz2 compiler environment. It´s useful
when writing your own Blitz2 libs and wish to test them without having to re-run Blitz2.

Compiler Options
The following is a discussion of the Options requester found in the Compiler menu.

Create Icons for Executable Files: if on, the compiler creates an icon to
accompany the file created with the CREATE FTLE option. This means the program
will be accessible from the WB. Note: for the program to execute correctly when run
 from WB the WBStartUp command should be included at the top of the source code.

Enable Runtime Errors: when on will trap runtime errors and invoke the Blitz2
debugger. See Chapter 5 for a thorough discussion of runtime errors in Blitz2.

Make Smallest Code: selects two pass compile mode, which always calculates the
min amount of memory required for the object code. Make Smallest is automatically
selected when creating executable files. Unselected, programs will compile quicker.

Debug Info: creates a symbols table during CREATE FILE so executable can be
debugged more easily with debuggers such as Metadigm's excellent MetaScope.
Buffer Sizes: allows different buffers to be altered when using Blitz2 as a one pass
compiler. These buffers are automatically optimized when using MakeSmallest (two

12

pass compile). The one exception is the string buffer setting, if using large strings
(such as reading entire files into one string) the string workspace buffer should be
increased in size to handle the largest string used.

Object Maximums: allows setting of maximum number of Blitz2 objects such as
screens, shapes etc. See Chapter 6 for a thorough explanation of Blitz2
objects and their maximum settings.

Resident: adds precompiled resident files to the Blitz2 environment. Click in the box
and type in the resident file name.

Keyboard Shortcuts

Having to reach for the mouse to execute some of the editor commands can be a
nuisance. The following is a list of keyboard shortcuts that execute the same options
that are available in the menus.

The right Amiga key is just to the right of the space bar and should be used like the
shift key in combination with the stated keys to execute the following commands:

Amiga A SELECTs all text that is indented the same amount as the current line
(strictly for structured programming housekeeping)

Amiga B BOTTOM will position cursor on last line of file

Amiga D DELETE LINE removes the line of text on the cursor position

Amiga F FIND/REPLACE executes the FIND command in the SEARCH menu

Amiga G GOTO LINE moves cursor to specific line of file

Amiga I INSERT LINE moves all text at and below the cursor down one line

Amiga J JOIN LINE adjoins next line with current line

Amiga L LOAD reads a file from disk

Amiga N NEXT searches for the next occurrence of the 'find string'

Amiga P PREVIOUS searched for previous occurrence of the 'find string'

Amiga Q QUIT will exit the Blitz2 editor

13

Amiga R REPLACE will replace text at cursor (if same as find string) with the
alternate string specified with the Find command.

Amiga S SAVE writes a file to disk

Amiga T TOP moves the cursor to the top of the file

Amiga W FORGET will unhighlight a selected block of text

Amiga Y DELETE TO RIGHT of cursor

Amiga Z CLI

Amiga ? DEFAULTS allows the user to change the look and feel of the Blitz2 editor

Amiga] BLOCK TAB moves whole block right one tab

Amiga [BLOCK UNTAB moves whole block left one tab

2. BLITZ BASIC'S

Type in the following two lines:

Print "This is my first program written in Blitz2!"
MouseWait
End

Then using the right button select COMPILE&RUN from the top right menu.

If you have typed the program in correctly a Blitz2 CLI Window will appear with the
message, click the mouse button to return to the editor Thats all there is to it!

The Print Command
Position the cursor on the Print statement and press the HELP key, the syntax for the
Print command appears at the top of the screen. It should read:

Print Expression[,Expression...]
The square brackets mean that the Print command will accept any number of
expressions separated by commas. An expression can be any number, string (text
in "quotes"), variable or BASIC calculation. The following is an example of all these.

Don't forget to include the MouseWait command when you test this, otherwise Blitz2
will print the message and return you to editor before you even have time to read it.

14

Print 3,"CARS",a,a*7+3

The following should be printed out on the CLI window: 3CARS03

If we add some spacing between each expression like so: Print 3," CARS ",a," ",a*7+3

The result will be the line: 3 CARS 0 3

Formatted Printing
We can change the way Blitz2 prints numbers using the Format command, this
is useful if want to print a list of numbers, in a column.

NPrint command is used to move cursor to a newline after printing the expressions.

Format "###.00"
Nprint 23.5
Nprint 10
Nprint .5
Nprint 0
MouseWait

A Simple Variable
The main power of a programming language lies in it's ability to manipulate
numbers and text. Variables are used to store these pieces of information.

The following line will store the value 5 in the variable a: a=5

The variable a now holds the value 5. We can tell the computer to add 1 to
the value of a making it 6 using the following expression: a=a+1

An expression can contain more than one operation, brackets can be used to
make one operation be evaluated before the others: a=(a+3)*7

Blitz2 Operators

An evaluation is a collection of variables, constants, functions and operators.
Examples of operators are the plus and minus signs.

An operator will generate an outcome using either the variable on it's right: a=NOT 5
or from the variables on it's left and right: a=5+2
An evaluation can include multiple operators: a=5*6+3
As in mathematics the order the operators are evaluated will affect the outcome, if the
multiply is done first in the above example the result is 33, if the addition was done

15

first, 5*(6+3), the result will be 40.

When Blitz performs an evaluation some operators have precedence over others and
will be evaluated first, the following two evaluations will have the same result because
Blitz2 will always evaluate multiplication before addition:

a=5*6+3 is the same as a=3+5*6

To override the order which Blitz2 evaluates the above, parenthesis can be added,
operations enclosed in parenthesis will be evaluated first: a=5*(6+3)

The following table lists the Blitz2 operators grouped in order of priority (LHS=left
hand side, RHS=right hand side). Operators in the same box have the same priority.

NOT RHS logically NOTted
RHS arithmetically negated

BITSET LHS with RHS bit set
BITCLR LHS with RHS bit cleared
BITCHG LHS with RHS bit changed
BITTST true if LHS bit of RHS is s

LSL LHS logically shifted left RHS times
ASL LHS arithmetically shifted left RHS times
LSR LHS logically shifted right RHS times
ASR LHS arithmetically shifted right RHS times

& LHS logically ANDed with RHS
| LHS logically ORed with RHS

^ LHS to the power of RHS
* LHS multiplied by RHS
/ LHS divided by RHS
+ LHS added to RHS
- RHS subtracted from LHS

= true if LHS is equal to RHS
<> true if LHS is not equal to RHS
< true if LHS is less than RHS
> true if LHS is greater than RHS
<= true if LHS is less than or equal to RHS
>= true if LHS is greater than or equal to RHS
AND LHS logically ANDed with RHS
OR LHS logically ORed with RHS
Boolean Operators

16

The boolean system can only operate with two values, true and false. In Blitz2 false
is represented by the value 0, true with the value -1.
The operators =, <>, <=, =>, > and < all generate a boolean result (true or false).

NPrint 2=2 will print value -1 as the result of the operation 2=2 is true. The operators
OR, AND and NOT can be used as boolean operators, Nprint 2=2 AND 5=6 will print 0 as
the result is false. OR operator returns true if either left or right hand side is true. NOT
operator returns false if the following operand is true and true if the operand is false.

Binary Operators

Many of Blitz2 operators perform binary type arithmetic. These operations are very
fast as they directly correspond to instructions built into the computer's processor.

The binary system means that all numbers are represented by a series of 1s and 0s.
A byte is made up of X such bits, a word 16 and a long word 32.

Discussion of binary operators in Blitz2 can be found in text covering 68000 processor.

Multiple Commands

The following program starts a with a value of 0, it then proceeds to add 12 to the

 value of a and print the result 4 times.

a=0
a=a+12:Nprint a
a=a+12:Nprint a
a=a+12:Nprint a
a=a+12:Nprint a
MouseWait

Note how we can put two commands on the same line by separating each command
with a colon character. Also, the first line a=0 is not needed as variables in Blitz2
always start out with a value of 0 anyway.

A Simple Loop

The following program prints out the 12 times table. Instead of typing in 12 lines
to do this we use a For..Next loop. A loop is where the program is told to repeat a
section of program many times.
For i=1 To 12..Next will execute the commands between the For and Next 12 times,
the variable i is used to keep count.

17

The asterisk * means multiply, a=i*12 means the variable a now equals 12 x the
variable i. Because i is counting up from 1 to 12 the variable a is assigned the
values 12, 24, 36,4X.. as the program loops.

For i=1 To 12
a=i*1 2
NPrint i,"*",12,"=",a

Next
MouseWait
End

Note how the 2 lines inside the loop are indented across the page. This practice
makes it easy to see which bits of the program are inside loops and which are not.

The Tab key can be used to move the cursor across the page so many spaces
when typing in lines that are indented.

Now try changing the first line to For i=1 To 100, as you can see the computer has
no problem what so ever doing it's 12 times table!

We could also change the number 12 in the first 3 lines to any other number to
generate an alternative times table.

Nested Loops

Following program is an example of nesting loops, a term that refers to having loops
inside of loops. By indenting the code that is inside inner loop even further we can keep
a check to make sure each For statement lines up with each Next statement.

For y=1 To 12
For x=1 To 12

NPrint y,"*",x,"=",x*y
Next

Next
MouseWait

The nesting of the For x=1 To 12 inside the For y=1 To 12 means the line inside the For
x will be executed 12 x 12 times, each time with a newcombination of x and y.

While..Wend and Repeat..Until

There are two other simple ways to program loops in Blitz2 besides using For..Next.

While..Wend and Repeat..Until loops are used as follows:

18

While a<20
Nprint a
a=a+1

Wend

Repeat
Nprint a
a=a+1

Until a>=20

As with a lot of BASIC commands they are pretty much self explanatory, the
inside of a While..Wend will be repeated while the condition remains true.
a Repeat..Until will loop until the condition is true.

A condition can be any evaluation such as While a+10<50, While f=0, While
b<>x*2 and so on.

The difference between the two loops above is that if a was greater than 20 to start
with, the Repeat..Until would still execute the code inside the loop once, where as the
While..Wend would not.

Endless Loops

When a program gets into the situation of repeating a loop for ever it is called an
endless loop. In this situation the programmer must be able to override the program
and tell it to stop.

To interrupt a program the Ctrl/Alt C keyboard sequence must be used. Holding
down the Ctrl key and the LeftAlt key press C, this will stop the program and the
debugger screen will appear. To exit from the debugger and return to the editor use
the Esc key (top left of the keyboard). The debugger is covered in detail in Chapter 5.

Using String Variables

Variables that contain text are called string variables. String variables require $ sign
after their names. Following shows a simple example of a string variable:

a$="Simon"
Nprint a$
MouseWait

Similar to numeric variables the = sign is used to assign the string variable a value.
The + sign can be used to add strings together (concatenate):

19

a$="Simon ": b$="Armstrong" :c$=a$+b$

The variable c$ will now contain the string "SimonArmstrong". Other functions
that manipulate strings are detailed in the reference section of this manual.

Program Flow

Often a program will have to decide to do either one thing or another, this is called
prograzn flow. The If Then commands are used to tell the program to do something only
If some condition is true. The following will only print "Hello" if the variable a has the
value 5: If a=5 Then Print "Hello"

The above line could be changed to do a section of commands if a was equal to 5
using the IF..Endif structure:

If a=5
Print "Hello"
a=a-1

Endif

The Else command is used to execute an alternative section if the condition is not true:

If a=5
Print "Hello"

Else
Print "GoodBye"

Endif

Note how we indent code inside conditional blocks just like we did with
loops. This makes the code more readable, it is easier to see which lines
of code will be executed when the condition is true etc.

The condition after the If command can be any complex expression, the following
are some examples of possible test conditions:

If a=1 OR b=2
If a>b+5
If (a+10)*50 <> b/7-3

An appendix at the end of this manual contains a complete description of using
multiple operators and their precedence.

Jumpin' Around

20

Often the program will need to jump to a different section of the code. The
Goto and Gosub routines are used for this. The location that the program is
jumping to needs a label so that Goto and Gosub can reference the location
they are jumping to. The following uses the label start:

Goto start
NPrint "HI THERE"
start
MouseWait

The Goto statement makes the program jump to label start, "Hi There" is never printed.

The Gosub command is used to jump to a subroutine, a subroutine is a piece of code
terminated with a Return statement. This means that after executing the subroutine,
program flow returns to where the Gosub command was executed and carries on.

.start:
Gosub message
Gosub message
Gosub message
MouseWait
End

.message
NPrint "Hello"
Return

Note how labels are preceded with a period This makes them mousable labels which
appear in a list on the right of the editor screen. We can make cursor jump to a label by
clicking it in this list. This is extremely useful for when editing large programs.

Getting Input from the User

A program will often require input from the user when it is running either via the
keyboard or mouse. For instance, the MouseWait command will stop the program until
the user clicks the left mouse button.

Keyboard input can be obtained using the Edit and Edit$ functions which is the same as
the Input command in other languages.

Following asks the user for their name and places it into a string variable:

Print "What is your name?"
a$=Edit$(80)
NPrint "Hello ",a$

21

MouseWait

Number 80 in Edit$(80) refers to maximum number of characters the user can type.

To input numbers from the user the Edit function is used, a=Edit(80) will let the user
type in any number up to 80 digits long and will place it in the variable a.

Arrays

Often a program will need to manipulate groups of numbers or strings. An array is
able to hold such groups. If we needed to keep track of ten numbers that were all
related, instead of using ten different variables we can define an array to hold them.

The Dim statement is used to define an array: Dim a(10)

The variable a can now hold 10 (actually 11) numbers, to access them we
place an index number inside brackets after the variable name:

a(1)=5
a(2)=6
a(9)=22
NPrint a(9)
a(1)=a(1)+a(2)
NPrint a(1)

The power of an array is that the index number can be a variable, if i=2
then a(i) refers to the same variable ,is a(2).

The following inputs 5 strings fron1 the user using a For..Next loop,
because the strings are placed in an an-ay they can be printed back out:

Dim a$(20)

NPrint "Type in 5 names"
Fori=1 To5

a$ (i) = Ed it$ (80)
Next

NPrint "The names you typed were"
For i=1 To 5

NPrint a$(i)
Next
MouseWait Next

3. TYPES, ARRAYS AND LISTS

22

Numeric Types

Blitz2 supports 6 different types of variables There are 5 numeric types for storing
numeric values with differing ranges and accuracies as well as a string type used to
store strings of characters (text).
The following table describes each Blitz2 numeric variable type with details on its
range and accuracy and how many bytes of memory each requires

Type Suffix Range Accuracy Bytes

Byte .b +-129 integer 1
Word .w +-32768 integer 2
Long .l +-2147483648 integer 4
Quick .q +-32768.0000 1/65536 2
Float .f +-9*10/\18 1/10/\18 4

23
The Quick type is a fixed point type, less accurate than floating point but faster.

The Float type is the Floating Point type supported by the Amiga last FP libraries.

A variable is assigned a certain type by adding the relevant suffix to it's name After the
first reference to a variable, its type is assigned and any future references do not
require the suffix unless it is a string variable.

Following are some examples of typical numeric variables with their relevant sutfix.

mychar b=127
my_score.w=32000
chip.l=$dff000 ;$ denotes a hex value
speed3.q=500/7 ;a quick has 3 d.p. accuracy
light_speed.f=3e8 ;e is exponent i.e. 3X10A8

Default Types

If no suffix is used in the first reference of a variable, Blitz2 will assign that variable
with the default type. This is initially the Quick type.

There are two forms of the DefType command, one which changes the default type the
other which defines the type of a list of variables supplied but which does not affect
the default type.

The following code illustrates both uses of DEFTYPE:

a=20 ;a will be a quick
DEFTYPE .f ;vars without suffix will now default to float

23

b=20 ;b will be a float
DEFTYPE .w c,d ;c & d are words, default still float

Note: the second instance of DEFTYPE should be read define type rather than its first
use which stands for change default type. The default type can also be set to
a newtype (see following section).

Other Blitz2 structures that work with certain type such as data statements, functions,
peeks and pokes will also use default type if no type suffix is included.

The Data Statement

The Data statement is used-to hold a list of values that can be read into variables.
The Restore command is used to point the data pointer at a certain Data statement.

A.type suffix is added to data statement to define what type the values listed are.

The following is an example of using Data in Blitz2:

main:
Read a,b,c
Restore myfloats
Read d.f
Restore mystrings
Read e$,f$,g$

myquicks:
Data 20,30,40

myfloats:
Data.f 20.345,10.7,90.111

mystrings:
Data$ "Hello","There","Simon"

Note: if the data pointer is pointing to a different type than the variable listed in the
Read statement a Mismatched Types runume error occurs.

Numeric Overflow & Unsigned Integers

When a variable is assigned a value outside of it's range (too large), an overflow error
will occur. The following code will cause an overflow error when it is executed:

a.w=32767 ;a is a word containing the number 32767
a=a+1 ;ovefflow occurs as result is out of range

Overflow checking is optional and can be enabled/ disabled in the RunTime errors
options of the Compiler Configuration. The default setting is off meaning the above
code will not generate a runtime error. In some instances, the integer types will be

24

required to represent unsigned (positive only) numbers. For example, a byte variable
will be required to hold values between O and 255 rather than -127 to 128. Overflow
checking has to be disabled in the Error Checking requester of the Compiler Options
window to use unsigned ranges such as this.

String Types

A string is a variable that is used to store a string of characters, usually text. The
suffix for a string variable is either a .s or the traditional $ character.

Unlike numeric variables the suffix must always be included with the name.
Also, string variable names MAY be re-used as numeric variable names.

The following is quite legal:

a$="HELLO"
a.w=20
NPrint a,a$

System Constants

Blitz2 reserves a few variables that hold special values known as system constants.
The following variables are reserved and contain the listed values:

Pi = 3.1415
On = -1
Off = 0
True = -1
False = 0

Primitive Types Summary

Blitz2 currently supports 6 primitive types. Byte, Word and Long are signed 8, 16
and 32 bit variable types. The Quick type is a fixed point type, less accurate than
FP but faster. The Float type is the FP type supported by the Amiga Fast FP libraries.

The String type is a standard BASIC implementation of string' variable handling.

Using DetType directive variables can be defined as certain types without adding the
relevant suffix. Once a variable is defined as a certain type, suffix is not necessary,
except in the case of string variables when the suffix must always be included.

A variable can only be of one type throughout the program and cannot be defined as
any other except again in the case of strings where the variable name can ALSO be
used for a numeric type.

25

NewTypes

In addition to the 6 primitive types available in Blitz2, programmers also have
available the facility to create their own custom types.

A NewType is a collection of fields, similar to a record in a database or a C structure.
This enables the programmer to group together relevant fields in one variable type.

The following code shows how fields holding a person's name, age and height can be
assigned to one variable:

NEWTYPE .Person
name$
age.b
height.q

End NEWTYPE

a.Person\name= "Harry",20,2.1

NPrint a\height

Once a NewType is defined, variables are assigned the new type by using a suffix
of .NewTypename for example a.Person

Individual fields within a NewType variable are accessed and assigned with the
backslash character "\" for example: a\height=a\height+1.

When defining a NewType structure, field names without a suffix will be
assigned the type of the previous field. More than one field can be listed
per line of a NewType definition, they must however be separated by colons.
The following is another example of a NewType definition:

NewType .nme
x.w:y:z ;y & z are also words (see above)
value.w
speed.q
name$

End NewType

References to string fields when using NewTypes do require $ or .s suffix as normal
string variables do, including suffix will cause Garbage at End compile time error.

From the first example:

26

a\name="Jimi Hendrix" ;this is cool
a\name$="Bob Dylan" ;this is uncool!

Previously defined NewTypes can be used within subsequent NewType definitions.
The following is an example of a NewType which itself includes another NewType:

NewType .vector
x.q
Yq
z.q

End NewType

NewType .object
position.vector
speed.vector
acceleration.vector

End NewType

DefType .object myship ;see following paragraph!

myship\position\x=100,0,0

Note how we now need to use two backslashes to access the fields in myship
just like a pathname in DOS.

A NewType, once defined, can be used in combination with both forms of the
DetType command just as though it was a another primitive type.

Arrays inside NewTypes

Besides including primitives and other newtypes within newtypes, it is also possible to
include arrays inside NewTypes The square brackets [&] are used when defining
arrays inside newtypes.

Unlike normal arrays, arrays in newtypes are limited to a single dimension and their
size must be dimensioned by a constant not a variable. However the array may be of
any type including newtypes.

Also unlike arrays. the dimension size between the square brackets is the size of the
array so addess.s[4] allocates 4 strings indexed 0..3.

The following is an example of using an array inside a newtype:

27

NEWTYPE .record
name$
age.w
address.s[4] ,same as address$[4]

End NEWTYPE

DEFTYPE .record p

p\address[0]="10 St Kevins Arcade"
p\address[1]="Karangahape Road"
p\address[2]="Auckland"
p\address[3]="New Zealand"

For i=0 To 3
NPrint p\address[i]

Next

MouseWait

The [index] can be omitted in which case the first item (item 0) will be used.

Defining an array inside a newtype with 0 elements creates a union with the
following field (both fields occupy the same memory in the NewType).

The UsePath Directive

Often when using complex NewTypes, pathnames to access fields within fields
can become very long.

Often a routine wil1 be dealing only with one particular field within a
newtype. By using the UsePath directive large pathnames can be avoided.

When a backslash precedes a variable or field name Blitz2 will insert the
UsePath path definition when it compiles the program.

The following code:

UsePath shapes(i)\pos
For i=0 To 9

\x+10
\y+20
\z-10

Next
is expanded internally by the compiler to read:

28

For i=0 To 9
shapes(i)\pos\x+10
shapes(i)\pos\y+20
shapes(i)\pos\z-10

Next

UsePath can help make routines a lot more readable and can save a lot of typing!

Note: UsePath is a compiler directive, meanning that it affects the compiler as it reads
through your program top to bottom not the processor when it runs your program.

This means that if a routine jumps to somewhere else in the program the
UsePath in effect will be governed by the closest previous usepath in the listing.

ARRAYS

Arrays in Blitz2 follow normal BASIC conventions. All Arrays MUST be dimensioned
before use, may be of any type (primitive or NewType)and any number of dimensions.

All arrays are indexed from 0..n where n is the size. As with most BASIC's an array
such as a(50) can actually hold 51 elements indexed 0..50 inclusive.

An array will be of default type unless a .type suffix is added to the array name:

Dim a.w(50) fan array of words

The ability to use arrays of NewTypes often reduces the number of arrays a BASIC
program requires.

The following: Dim Alienflags(100),Alienx(100),Alieny(100)
can be implemented with the following code:

NEWTYPE .Alien
flags.w
x.w
y.w

End NEWTYPE

Dim Aliens.Alien(100)

You may now access all of the required alien data using just one array.
To set up all of the aliens x and y entries with random coordinates

For k=1 To 100
Aliens(k)\x=Rnd(320),Rnd(200)

29

Next

This also makes it much easier to expand the amount of information for the aliens
simply by adding more entries to the NewType definition, no new arrays required.

Note: unlike most compilers, Blitz2 DOES allow the dimensioning of arrays
with a variable number of elements for example: Dim a(n). Also strings in arrays do not
require a maximum length setting as is the case with some other languages.

LISTS

Blitz2 also supports an advanced form of the array known as the List. Lists are arrays,
but with slightly different characteristics.

Often only a portion of the elements in an array will be used and the programmer will
keep a count in a separate variable of how many elements are currently stored in the
array. In this situation the array should be replaced with a list which will make things
both simpler and faster for managing the array.

Dimming Lists

A list is dimensioned similar to an array except the word List is inserted
after the word Dim. Lists are currently limited to one dimension.
Here is an example of setting up a list:

NEWTYPE.Alien
flags.w:x:y

End NEWTYPE

Dim List Aliens.Alien(100)
The difference between a list and an array is that Blitz2 will keep an internal count of
how many elements are stored in the list (reset to zero after a Dim List) and an internal
pointer to the current element within the list (cleared after a Dim List).

Adding items to a list

A list starts out as empty, items can be added using the AddItem and AddLast
functions. Because the list might be full both commands return a true or false to
indicate whether they succeeded.

The following adds one alien to the previously dimmed list:

If Additem(Aliens())
Aliens()\x=Rnd(320),Rnd(200)

Endif

30

Note how there is no index variable inside the brackets in either use of Aliens().
Although Blitz2 will not flag an error when an index is used, indexes should never be
used with list arrays. The empty brackets represent the current item in the list, in this
case, the newly added item.

Because AddItem returns false when the list is full we can use a While..Wend loop to
fill an entire list with aliens (then kill 'em off slowly!):

While Additem(Aliens())
Aliens()\x=Rnd(320)
Aliens()\y=Rnd(200)

Wend

The above loops until the list is full. 1s we wanted to add 20 aliens to a list we could
use a For..Next but still need to check if the list was full each time we add an alien:

For i=1 To 20
If Additem(Aliens())

Aliens()\x=Rnd(320)
Aliens()\v=Rnd(200)

Endif
Next

Note that lists can be dimensioned to hold any type not just aliens!

Processing Lists

As mentioned, when an item is successfully added, that item becomes the current
item. This current item may then be referenced by specifying the list array name
followed by empty brackets ().

To process a list (loop through all the items added to a list), we reset the list pointer to
the beginning using ResetList and then use the NextItem command to step the pointer
through the items in the list. This internal pointer points to the current item.

The following moves all the aliens in the list in a rather ineffective manner (towards
the middle of the screen 1 suspect):

USEPATH Aliens()
ResetList Aliens()
While Nextitem(Aliens())

If \x>160 Then \x-1 Else \x+1
If \y>100 Then \y-1 Else \y+1

Wend

31

The While Nextitem(Aliens())..Wend structure loops until each item in the list has
been the current item. This means that any alien that has been added to the list will
be processed by the loop.

The function NextItem returns false if the loop comes to the end of the list.

Again, NextItem returns a true or false depending on whether there actually is a next
item to be processed. This example illustrates the convenience lists offer over normal
arrays, no "for i=1 to num" to step through arrays using the old index method, instead
a clean While..Wend with a system that is faster than normal arrays!

Removing Items From a List

It is often necessary to remove an item from a list while you are processing it. This
may be achieved with Kililtem. This example again works with the Aliens list:

ResetList Aliens()

While Nextitem(Aliens())
If Aliens()\flags=-1 ;if flag=-1

Killtem Aliens() ;remove item from list
Endif

Wend

Note: after a Killtem, the current item is set to the previous item. This means
the While Nextitem() loop will not miss an item if an item is removed.

List Structure

Although it is possible to access items in a list by treating them as
normal arrays with an index variable it should never be attempted.

The order of items in a list is not always the same as the order they are in memory.
Each item contains a pointer to the item before and the item after. When Blitz2 looks
for a next item it just looks at the pointer attached to the current item, its physical
memory location is NOT important. When an item is added to a list, an arbitrary
memory location is used, the current item's NextItem pointer is changed to point to
the new item and its old value is given the new items Nextitem pointer.

Confused? Well don't worry, just don't ever treat lists as normal arrays by
trying to access items with the index method.

The Pointer Type

32

The pointer type in Blitz2 is a complex beast. When you define a variable as a pointer
type you also state what type it is pointing to. The following defines biggest as a
pointer to type Customer.

DefType *biggest.Customer

The variable biggest is just a long word that holds a memory location where
some other Customer variable is located.

As an example we may have a large list of customers, our routine goes through them
one by one, if the turnover of a customer is larger than the one pointed to by Biggest
 then we point Biggest towards the current customer: *biggest=CustomerArray()

Once we have looped through the list we could print out the Biggest data just as if
it was type Customer when it is actually only a pointer to a variable with type
customer with Print *biggest\name.

4. PROCEDURES

Introduction

A procedure is a way of 'packaging' routines into self contained modules.
Once a routine is packaged into a procedure, it can be 'called' from your main
code, parameters can be passed, and an optional value returned to your main code.
Because a procedure contains its own 'local' variable space, you can be sure that
none of your main or 'global' variables will be changed by the calling of the procedure.
This feature means procedures are very portable, in effect they can be ported to other
programs with out conflicting variable name hassles.

Procedures that return a result are called functions in Blitz2, ones that do not are
known as statements.

Functions and Statements in Blitz2 have the following characteristics:

. the number of parameters is limited to 6

. gosubs and gotos to labels outside a procedure's code is strictly illegal

. any variables used inside a procedure will be initialized with every call Statements

STATEMENTS: A procedure that does not return a value is called a Statement in Blitz2.

A example of a statement type procedure which prints the factorial of a number is:
Statement fact{n}

a=1

33

For k=2 To n
a=a*k

Next
NPrint a

End Statement

For k=1 To5
fact{k}

Next
MouseWait

Use of curly brackets { and } to both define parameters for the procedure, and in calling
the procedure. These are necessary even if the procedure requires no parameters.

If you type in this program, compile and run it, you will see that it prints out the
factorials of the numbers from 1 to 5. You may have noticed that the variable k has
been used in both the procedure and the main code. This is allowable because the k in
the procedure is local to the fact procedure, and is completely separate from the k in
the main program. The k in the main program is known as a global variable.

You may use up to six variables to pass parameters to a procedure. If you require more
than this, extra parameters may be placed in special shared global variables.

Also, variables used to pass parameters may only be of primitive types, you cannot
pass a NewType variable to a procedure however you can pass pointer types.

Functions

In Blitz2, you may also create procedures which return a value, known as functions.
The following is the same fact procedure implemented as a function:

Function fact{n}
a=1
For k=2 To n

a=a*k
Next
Function Return a

End Function

For k=1 To5
NPrint fact{k}

Next
MouseWait

Note how Function Return is used to return the result of the function. This is much
more useful than the previous factorial procedure, as we may use the result in any

34

expression we want. For example: a-fact(k}*fact{j}

A function may return a result of any of the 6 primitive types. To inform a procedure
what type of result you are wanting to return, the type descriptor may be appended to
Function command. If this is omitted, current default type will be used (normaly .q).

The following is an example of a string function:

Function$ spc{n}
For k=1 To n

a$=a$+" "
Next

Function Return a$
End Function
Print spc{20},"Over Here!"
MouseWait

Recursion

The memory used by a procedure's local variables is unique not only to the actual
procedure, but to each calling of the procedure. Each time a procedure is called a new
block of memory is allocated and treed only when the procedure ends.

The implications of this are that a procedure may call itself without corrupting
it's own local variables. This allows for a phenomenon known as recursion. Here is
another version of the factorial procedure which uses recursion:

Function fact{n}
If n>2 Then n=n*fact{n-1 }
Function Return n

End Function

For n=1 To 5
NPrint fact{n}

Next
MouseWait

This example relies on the concept that the factorial of a number is actually the
number multiplied by the factorial of one less than the number.

Accessing Global Variables

35

Sometimes it is necessary for a procedure to access one or more of a programs global
variables. For this purpose, the Shared command allows certain variables inside a
procedure to be treated as global variables.

Statement example{}
Shared k
NPrint k

End Statement

For k=1 To5
example{}

Next
MouseWait

The Shared command tells Blitz2 that the procedure should use the global variable k
instead of creating a local variable k. Try the same program with the Shared removed.
Now, the k inside the procedure is a local variable, and will therefore be 0 each time
the procedure is called.

Procedures Summary

Blitz2 supports two sorts of procedures, the function and the statement. Both are able
to have their own local variables as well as access to global variables through the use
of the Shared statement.

Up to six values can be passed to a Blitz2 procedure.

A Blitz2 function can return any primitive type using the Function Return commands.

Using Assembler in Blitz Procedures

Procedures also offer an excellent method of incorporating assembly language
routines into Blitz programs.

The Statement or Function is defined as usual with a list of parameters enclosed in
curly brackets. When using assembler, the parameters passed to the procedure are
loaded in data registers D0..DS.

Care must be taken to ensure that address registers A4-A6 are restored to their initial
state before the code exits from the procedure using the AsmExit command.

To set the return value in assembler for Functions simply load the register D0 with the
value before the AsmExit command.
For an example of an assembler procedure in Blitz, turn to page 60.

36

5. BLITZ ERROR CHECKING AND DEBUGGING

Compile Time Errors

Blitz2 reports two types of errors. Compile time errors are those found when Blitz
attempts to compile your code, runtime errors occur when program is being executed.

The first type, compile time errors, cause a message to appear on the editor screen.
When OK is selected you are returned to the offending line of code in your program.

Appendix 2 of the Blitz2 Reference Manual contains a description of all the possible
errors at compile time. The following list repeats some Blitz2 rules that have to be
abided by for your program to be successfully compiled:

1. Any Blitz functions (commands that return a value) must have their parameters
 inside brackets:

If ReadFile(0,"ram:test")

2. Blitz commands that are not functions must not have their parameter in brackets:

BitMap 0,320,256,3

3. Using a .type suffix when referring to items in a NewType will cause garbage at
 end of line error:

person\name$="Harry" ;(drop the $)

4. A numeric variable can only be one .type, a MisMatched Type error will occur if you
attempt to use a different .type suffix further down the program with the same variable
name (with the exception of string variables).

Of course there are many hundreds of mistakes that can cause your program to fail to
compile, most will require a quick look in the Blitz2 Ref Manual to check syntax
of a command and maybe cross reference your code with one of the examples.

Don't forget the Help key to quickly check the syntax of a command.

The CERR Directive

When using macros and conditional compiling you may wish to generate your own
compile time errors.
The CERR directive is used to generate user defined compile-time errors. Following will
halt the compiler and generate a message "Should Have 3 Parameters":

37

CERR "Should Have 3 Parameters!"

See conditional compiling in Chapter 9 for more information on CERR.

Runtime Errors

Errors that occur while your program is executing are called runtime errors. When
developing programs in Blitz, the Runtime Error Debugger should always be enabled on
the Compiler Options. If it´s not and an error occurs the system will crash.

If you need to run your program without runtime errors enabled for speed purposes
a SetErr directive should be included to stop the system crashing, the system will then
jump to the code listed after the SetErr.

The following line included at the top of your program is suggested:

SetErr:End:End SetErr

Any programs that use filehandling should always include some sort of error trapping
to handle situations where program cannot locate a file, or the file it´s wrong type.

Any operating system based software should also always include error checking as
Screens and Windows may fail to open due to low memory.

You may also setup an error handler just for one section of code. The SetErr..
errorhandler..End SetErr should be at the start of the section and a ClrErr at the end.

The following will flash the screen and end if LoadShapes fails:

SetErr
DisplayBeep_ 0
End

End SetErr

LoadShapes 0,"filename"

ClrErr

The Blitz Debugger

If a runtime error occurs when program is run from editor the Blitz2 debugger will be
activated. RuntimeErrors must also be enable in the compiler options requester.

The debugger will not be activated if there is an error-handler already

38

enabled in the program using the SetErr command.

The debugger can also be activated by using the CTRL/ALT C keys, clicking on the
"BRK gadget of the debugger window or including a STOP command in your program.

The debugger is a powerful tool in finding out causes of errors and locating bugs. The
ability to step back through code executed prior to the break gives the prograrmmer an
excellent understanding of how an error has occurred. The follwing is a screenshot of
the debugger after the program encountered a STOP command.

Note, by making the debugger window larger more of the program can be viewed.

The Debugger Gadgets

The following is a description of the debugger gadgets:

BRK Click on this to stop a program running and enable the Blitz debugger.

STP Use this to stop a program during Trace mode.

SKP Skip causes the debugger to skip a command, program execution
 will continue from the next command when then RUN.

TRC Trace mode allows the programmer to single step through their code, by
 increasing the size of the debugger window program flow can be viewed.

RUN Causes program execution to resume after being stopped.

<< View previous command history allows the programmer to review the
 commands that were executed prior to the program being stopped.

>> View forward allows the user to forward through the command history
 after using the view previous gadget.

EXC Execute allows the programmer to manually enter a Blitz command to be
 executed by the debugger.

EVL Evaluate allows the programmer to view any variable simply by entering
 it's name after clicking on EVL.

Tracing program execution

The debugger allows the user to single step through or trace program execution,
displaying in it's window which command is currently being executed.

39

Step is used to single step through your program, each time you click on
STP the debugger will execute the command pointed to by the arrow and stop.
Trace steps continuously through the code displaying each command as it
goes. To stop the Trace use the STP gadget.

Level is used to change the trace level, if Level is ON, the debugger will not trace or
single step through the inside For..Next loops but execute normally until loop exits.

It will also not trace the execution of any procedures or subroutines called, this is most
useful for watching the program's main loop while not having to sit through the trace of
each subroutine when called.

Resuming Normal Execution

Program execution return normally after debugger is activated using Run gadget.

If debugger was activated using STOP command the arrow will be pointing to STOP,
before continuing the command must be skipped over using Ignore command. This is
true for any command that has caused a RunTime error and invoked the debugger.

To return to the editor from the debugger either hit the Escape key or click on the close
window gadget of the debugger Window.

Viewing command history

The debugger keeps a record of the commands executed before the program is
stopped in a large buffer.

The Back-up command will step backwards from where the program halted,
allowing the programmer to view the previous commands executed by the
computer. A hollow arrow marks the current position in the history buffer.

Forward command is used to step forwards through the history buffer, attempting to
step past where the program was stopped will produce a AT END OF BUFFER error.

These features are invaluable to following through program execution up to where the
program was halted. If a program halted in the middle of a subroutine or
procedure you can step backwards to find where the routine was called from.

Direct Mode

While the debugger is activated the programmer has two tools available to examine the
internal state of the program.
To find out the value of any variables the EVaLuate command can be used. A prompt
will appear, after typing the name of the variable and hitting return the value will be

40

 printed on the debugger display.

The EXeCute command is used to run a Blitz2 command. A prompt will appear
and the programmer can then type in any Blitz2 command such as CLS or n=2().

Debugger Errors

Following errors may occur when using direct mode commands Evaluate & eXecute:

Can't Create in Direct Mode

Occurs if you try and Evaluate a non existent variable (not created) in the program.

Library Not Available in Direct Mode

Occurs when a Blitz2 command is executed and is from a command library not used by
the program. If the program doesn´t use strings for instance, the string command
library will not be part of the object code and so any string type commands will not be
able to be executed.

Not Enough Room in Direct Mode Buffer

This error should never occur. if it does the object butter size in the Compiler Options
requester should be increased.

AT END OF BUFFER

Occurs if the programmer tries to view Forward of where the program stopped.

6. BLITZ OBJECTS

This chapter covers the use and handling of Blitz2 objects, structures designed to
control multiple system elements such as graphics, files,screens, etc.

Blitz2 looks after all memory requirements for objects including freeing it up when the
program ends.

Although most objects have their own specific commands, the standard way they are
handled in Blitz2 means the programmer is never faced with unusual syntax. Instead
they can depend on a standard modular way of programming the multitude of elements
available in Blitz2.

The following is a list of the main Blitz2 objects:

41

Files for sequential and random access DOS file handling
Modules soundtracker compatible music objects
Blitzfonts 8x8 fonts for fast BitMap text output
IntuiFonts any size fonts for Window text output
Shapes standard Blitz2 graphics element
Palettes colour palette structure
BitMaps standard Blitz2 display element
Sounds digitised sound sample element
Sprites Blitz mode hardware sprite element
Screens standard Intuition type screens
Windows standard Inuition type windows
Gadgets standard Intuition type gadgets
Menus standard Intuition type menus

Object Similarities

Blitz2 objects all have a set of commands allowing the program to create or define
them, manipulate and of course destroy them.

Most objects have a chapter in the Blitz2 reference manual devoted to them, outlining
all the special commands used to create and manipulate the object.
All Blitz2 objects can be destroyed using the Free command. If an object has not been
destroyed when a program ends, Blitz2 will automatically Free that object.

Free BitMap 0 will free up all memory allocated for object BitMap 0, this is useful when
using objects temporarily and will need memory later in the program, otherwise it´s
usual to let Blitz free up all objects automatically when program ends.

Object Maximums

Each object has its own maximum. this number defines how many of one type of
object can be created and manipulated by the program. The maximum can be
changed for each object in the Compiler Options window of the editor.

The runtime error Value Out Of Maximum Range means you have tried to use an
object number greater than that set in the maximums window of Compiler Options.

Using an Object

Many commands need previously created objects present to operate properly.
For example, the Blit command, which is used to place a shape onto a bitmap, needs
both a previously created shape object and a bitmap object.

When you use the Blit command, you specify the shape object to be blitted and Blitz
will blit that shape onto the currently used bitmap.

42

Use BitMap 0 ;make bitmap the currently used bitmap
Blit 3,10,10 ;blit shape 3 onto currently used bitmap

The Use command in the previous example makes BitMap 0 the currently used
bitmap. Screens, Windows and Palettes are three other Blitz2 objects that often need
to be currently used, for commands to work properly.

Note, when an object is created, it becomes the currently used object of it's class.

Blitz2 makes extensive use of this currently object idea. It's advantages include faster
program execution, less complex commands, and greater program modularity.

Input/Ouput Objects

BitMap, File and Window objects can all operate as I/O devices. ObjectInput and
ObjectOutput commands allow user to channel input and output to different places.

The Print command will always write to the current output object, edit and inkey$ will
always attempt to read from the current input object.

WindowOutput 2 ;window 2 is the current output object
Print "HELLO"
BitMapInput 1 ;make bitmap 1 the current input object
a$=Edit$(80)

Object structures (for advanced users)

Appendix 1 of the Blitz2 reference manual contains descriptions of each of the Blitz2
object's structures. The Addr command is used to find the location in memory of a
particular objects structure.

Advanced users can use the Addr command with peek & poke and inline assembler
routines to access important values in an object's structure. This is often helpful with
system type objects such as Screens and Windows that contain pointers to their
Intuition counterparts.

The following calls the system command ScreenToFront_ obtaining the location
of the Inuition Screen structure from the Blitz2 Screen object in memory.

ScreenToFront_ Peek.l(Addr Screen(0))

Next listing illustrates obtaining a Window's system structure and assigning it to a
pointer type .Window. AmigaLibs.Res should be resident before run this example.

43

FindScreen 0
Window 0,10,10,100,100,9,"SIZE ME!",1,2
*w.Window=Peek.l(Addr Window(0))
WindowOutput 0
Repeat

ev.l=WaitEvent
WLocate 0,0
NPrint *w\Width
NPrint *w\Height

Until ev=$200

Note: the NewType.Window refers to the system (Intuition) window structure
where as the NewType .window refers to the Blitz2 window structure.

Overview of the primary Blitz2 Objects

Screens

Screens are created using Screen and FindScreen commands. 1st will open a new
screen while 2nd will make an existing Screen (usually WB screen) a Blitz2 Screen.

Free Screen n should only be attempted after any Windows open on the Screen are
closed (freed) first.

Screen objects both configure the resolution of the display and its palette as well as
being the place where Windows are opened. Any Windows opened, RGB or UsePalette
commands will use the currently used screen.

The function Peek.l(addr Screen(n)) can be used to obtain the location of the system
.Screen structure when calling system routines.

Windows

Windows are created with the Window command. Gadgets and menus are always
added to the currently used window while the drawing commands WPlot, WCircle,
WLine and WBox all render to the currently used Window.

Window objects can be used for input/output using WindowInput and WindowOuput
commands. The cursor position for in/out can be controlled with WLocate command.

Windows can be freed without worry of freeing any attached gadget or menulists.

Gadget and Menu lists

44

Gadgets and menus must be grouped together in Blitz objects known as. yes
you guessed it, gadgetlists and menulists. These lists are attached to a Window when
the window is first created (opened). This means that gadgets and menus should all be
pre-defined in their lists at the start of the program.

Palettes

A palette object contains RGB information for each of the colours in a display.
Palettes are a little different to regular Blitz objects in the following ways.

Use Palette will set the current screen or slice to the colours in the palette.

The RGB command as well as the Red(), Green() and Blue() functions apply to
the colours in the current Slice or Screen NOT in the current palette.

There is no create palette command, they are either created when loaded from an IFF
file or when using PalRGB, if no palette object exists with either command Blitz2 will
create one.

BitMaps

A bitmap refers to the array of pixels that make up the display. A bitmap can either be
created with the BitMap command, loaded from disk or fetched from a Screen using the
ScreensBitMap command.

A Bitmap command can be freed using the Free BitMap n command, you can not
free bitmaps created with the ScreensBitMap command.

As with windows, bitmaps can be used as input/output devices with BitMapInput and
BitMapOutput commands. These are used primarily in BlitzMode.

In BlitzMode the keyboard should be enabled with BlitzKeys On before
attempting to use BitMapInput.

When using BitMapOutput the Locate command can be used to position the cursor.

Shapes

Shapes are used to contain graphic images. They can be initialized by either loading
them from disk or being clipped from a bitmap object using GetAShape command.

Shapes are freed using standard Free Shape n syntax. Shapes should not be freed if
they are used with gadgets or menu items until relevant gadget or menulist is freed 1st.

There are many powerful commands in Blitz2 to manipulate shapes including rotation

45

and scaling.

Sprites

Sprites are initialized by either loading them from disk or converting a shape object to
a sprite object using GetaSprite. The shape object can be freed once it has been
converted to a sprite.

Free Sprite n will free a sprite

Sprites can currently only be used in Blitz mode however in Amiga mode, the pointer
can be assigned to a single sprite object.

Slices

A slice is used to configure a display in Blitz mode. They are initialized with Slice
command.

Unlike other objects, single slices cannot be freed. FreeSlices is used to free all slices
currently initialised.

The commands Show, ShowF, ShowB and ShowSprite all use the currently use slice.
The RGB command also affects the colour registers in the currently used slice as does
the Use Palette command.

Files

Unlike other Blitz objects files are opened and closed rather than initialized & killed.

Files are initialised with OpenFile(), ReadFile() and WriteFile() functions. Unlike other
Blitz objects a function is used so the program can tell if file was well opened.

CloseFile n command is used to 'free' a file object. The command Free File n may also
be used, unlike other objects it is best to close all files yourself rather than rely on
Blitz2 to close them when the program exits.

A file is of course an input/output object, the commands FileInput and FileOutput are
used to direct input and output to files.

Get, Put, ReadMem and WriteMem require file# parameters and so do not require the
use of FileInput and FileOutput commands.

Objects Summary

46

Blitz2's objects are custom data structures used by the libraries to handle a whole
assortment of entities. Blitz2 manages the memory required by these structures,
freeing them automatically when a program ends.

They provide a simple interface to many of the more complex Blitz2 commands.
Parameter passing is minimised as many of the Blitz2 commands take
advantage of the currently used object.

As libraries are upgraded and added to Blitz2, more objects will be added
and versatility and functionality of existing objects will be increased.

7. BLITZ MODE

Although the Amiga's operating system is very powerful, it's ability to take full
advantage of the graphics capacity of the machine is limited. Blitz mode is for
programmers wanting to produce smooth animated graphics for games and the like.

The command Blitz puts your program in Blitz mode. When this happens the
operating system is disabled and your program takes over the whole machine.
This means that it will not multi-task and file access is no longer possible.

The benefits of Blitz mode are that programs run a lot quicker and display
options such as smooth scrolling and dual-playfield are possible.
Blitz mode is not a permanent state, when your program re-enters Amiga mode
or exits, the operating system is brought back to life as though nothing happened.

Careful attention must be payed regarding entering Blitz mode, version 1.3
and older of the operating system can take up to 2 seconds to flush any buffers after a
file is closed. You should always ensure that absolutely no disk or file access is taking
place before entering Blitz mode. At the time of this writing, no software method of
achieving this has yet been discovered. The best we can suggest is that
a VWAIT 100 should always be executed before using Blitz mode.

Slice Magic

The designers of the Amiga hardware have implemented many features for acheiving
smooth, fast graphics. After entering Blitz mode the display is controlled using Slices.
Slices are much more flexible than the operating system's Screens, they allow features
such as smooth scrolling, double buffered displays and much more.

The ability to have more than one slice means that the display can be split into
different regions each with their own resolution.
The following is a description of the main display features accessible with slices:
Smooth Scrolling

47

Smooth scrolling is acheived by displaying only a portion of a large bitmap. The Amiga
hardware enables us to move the display window around the inside of a
large bitmap as the following diagram shows:

The display window represents what is shown on the monitor, as we move the
display window across the bitmap to the right the image we see on the screen scrolls
smoothly to the left.

The Blitz commands Show, ShowF and ShowB allow us to set the position of the
display window inside the bitmap.

The above diagram limits the amount we can scroll to the size of the bitmap. By
duplicating the left portion of the bitmap on the right we can smoothly scroll display
across, when it reaches the right, reset it back to the far left. As there is no change
when the display is reset to the left the illusion of continuous scrolling is created.

The above left right scenario also applys to vertical scrolling (up and down).

Dual-Playfield

In some situations, the display will be made up of a background and a foreground.
Amiga has the ability to display one bitmap on top of the other called dual-playfield
mode to achieve this effect.

In a dual-playfield display, two 8 colour bitmaps can be displayed, one infront of the
other, any pixels set to colour zero in the front playfield will be transparent letting
the back playfield show through. Each playfield can have its own colours.

Copper Control

Smooth animation is acheived by moving graphics in sync with the video display. The
display is created by a video beam that redraws the screen line by line every 50th of a
second. Often, it´s useful to sync things to vertical position of the vertical beam. This is
acheived using the Amiga graphics co-processor known as the Copper.

Blitz2 offers several ways of taking advantage of the copper hardware. The most
popular is to change the colour of the background colour to produce rainbow type
effects on the display. This is acheived using the ColSplit command.

Those with good knowledge of Amiga hardware may wish to program copper to make
other changes at different vertical places, this can be acheived using CustomCop.
The Blitter

48

Amiga has custom hardware specifically to transfer graphic images onto bitmaps
known as the glitter. Blitz2 offers several ways of blitting shapes onto a bitmap and a
special Scroll command to shift areas of a bitmap around using the blister.

Following is a brief overview of the various blister based commands in Blitz2:

Blit used to put shapes onto bitmaps.

QBlit same as Blit but Blitz2 remembers where the shape was put and will erase
 it when it is time to move the shape somewhere else on the bitmap.

BBlit same as QBlit but when it is time to move the shape, instead of erasing the
 shape, Blitz2 replaces what was on the bitmap previous to the BBlit.

SBlit sames as Blit but with a stencil feature which protects certain areas of the
 bitmap from being blitted on.

Block fast version of Blit that works only with rectangular shapes a multiple of
 16 pixels wide.

ClipBlit Slow version of Blit which will clip the shape to fit inside the bimap.

Scroll used to copy sections of a bitmap from one position to another.

QAmiga Mode

It is also possible to jump out of Blitz mode and back into Amiga mode.
This can done using either the QAmiga or Amiga statement.

Using Amiga to go back into Amiga mode will fully return you to the Amiga's
normal display, complete with mouse pointer.

Using QAmiga will return you to Amiga mode, but will not affect the display at all. This
allows Blitz mode programs to jump into Amiga mode for operations such as file I/O,
then jump back to Blitz mode without having to destroy Blitz mode display.

An Important note!!!!!
You should always ensure that absolutely no disk or file access is taking place before
entering Blitz mode. At the time of this writing, no software method of achieving this
has yet been discovered.

By following these guidelines using Blitz mode should be pretty safe:

. Always wait for the floppy drive light to go out if you have saved some source code
before Compiling/Running a program which launces straight into Blitz mode.

49

. A590 Hard drive users - always wait for the second blink of the drive light
when using Workbench 1.3, 2.0 users have there buffers flushed in one go.

. If you use the QAmiga statement for the purpose of writing data to disk, it's a good
idea to execute a delay before go back to Blitz mode - In effect, simulating above.
Executing a VWait 250 will provide a delay of about 5 seconds - a safe delay to use.
After reading data use a VWait 50. Another important thing to remember about Blitz
mode is that any commands requiring the presence of the OS become unavailable
while you're in Blitz mode. If you attempt to open a Window in Blitz mode, you will be
greeted with an 'Only available in Amiga Mode' error at compile time. For this reason,
the Reference Guide clearly states which commands are available in which mode.

The Blitz, Amiga, and QAmiga statements are all compiler directives. This means they
must appear in applicable order in your source code.

Summary

Blitz2 provides two environments for your programs to execute in. Amiga mode
should be used for any applications software and whenever your game needs
to load data from disk. Blitz mode is for programs that need to take advantage of the
special display modes we have provided in Blitz2. These provide performance that is
just not available in Amiga mode but will halt the Amiga's operating system.

To conclude, the only time it is acceptable to close down the Amiga's multi-tasking
environment is when the software is dedicated to entertainment. Any applications
software that uses Blitz mode will NOT be welcomed by the Amiga community.

8. ADVANCED TOPICS

Resident Files

To make writing programs which manipulate large number of NewTypes, macros
or constants easier, Blitz2 includes a feature known as resirlentfiles.

A resident file contains a pre-compiled list of NewTypes, macros and constants. By
creating resident files, all these definitions can be dropped from the main code making
it smaller and taster to compile.

To create a resident file you will need a program which contains all the NewTypes.
macros and constants you want to convert to resident file format.
The following is an example of a such a program:

NEWTYPE.test

50

a.l
b.w

End NEWTYPE

Macro mac
NPrint "Hello"

End Macro

xconst= 10

To convert these definitions to a resident file, all you need to do is COMPILE&RUN the
program, then select CREATE RESIDENT from the COMPILER menu. At this point, you
will be presented with a file requester into which you enter the name of the resident
file you wish to create. That's all there is to creating a resident file!

Once created, a resident file may be installed in any program simply by entering the
name of the resident file into one of the 'RESIDENT' fields of the compiler options
requester. Once this is done, all NewType, macro and constant definitions contained in
the resident file will automatically be available.

Resident file AMIGALIBS.RES contains all the structures, constants and macros
associated with the Amiga OS. Those familiar with programming the OS will not have to
include all the usual library header files and will save minutes every compile time.

Operating System Calls

Much effort has been made to let the Blitz2 programmer make the most of the
Amiga's powerful operating system.

Calling Operating System Libraries

Often the programmer with a good knowledge of the OS will want to access routines
that have not been supported by the 'internal' Blitz2 command set. All routines in the
Exec, Intuition, DOS and Graphics libraries are accessible from Blitz2 (see appendix 5
in Blitz2 Reference Manual).

Support for other Amiga standard libraries is available by purchasing the
Blitz2 advanced programmers pack from Acid Software.

Following is a example of call routines in Amiga ROM's graphics & intuition libraries:

FindScreen 0 ;use workbench screen
;open gimmezerozero window

Window 0,0,10,320,180,$408,"",1,2

51

rp.l=RastPort(0) ;get rastport for window
win.l=Peek.l(Addr Window(0)) ;find window structure

DrawEllipse_rp, 100,100,-50,50 ;graphics library
MoveWindow_win,8,0 ;intuition library
BitMap 1,320,200,2 ;setup work bitmap
Circlef 160,100,100,1 ;draw something

;then transfer it to window

BltBitMapRastPort_ Addr BitMap(1),0,0,rp,0,0,100,100,$c0

WaitEvent

The final command BltBitMapRastPort_ is very useful for transferring graphics drawn
with the faster bitmap based Blitz2 commands onto a Window.
This is a very system friendly way of acheiving this objective.

Accessing Operating System structures

With the file AMIGALIBS.RES resident (see start of chapter) even more control of the
OS is possible. The following is an example of accessing OS structures.

;variable *exec points to the ExecBase struct
;variable *mylist points to a List type
;variable *mynode points to a system node

*exec.ExecBase=Peek.l(4)
*mylist. List=*exec\LibList
*mynode.Node=*mylist\lh_Head

While*mvnode\ln_Succ
a$=Peek$(*mynode\ln_Name);print node name
NPrint a$
*mvnode=*mvnode\ln_Succ:qo to next node

Wend

MouseWait

The use of the asterisk in *variablename.type means that instead of Blitz2
creating a variable of a certain type it actually just creates a 'pointer' to that type.
The type (structure) can then be accessed just like it was an internal Blitz2 variable.

The command Peek$ is an excellent way of retrieving text from OS structures, it reads
memory directly into a Blitz2 string variable until it hits a null (chr$(0)).

52

Locating Variables and Labels in Memory

The ampersand ('&') character can be used to find the address of a variable
in the Amiga's memory. For example:

;
; An example of using '&' to find the address of a var.
;
Var.l=5
Poke.l &Var, 10
NPrint Var
MouseWait

This is similar to the VarPtr function supplied in other BASIC's.

When asking for the address of a string variable, the returned value will
point to the first character of the string. The length of the string is a 4
byte value, located at the address-4.

The '?' character can be used to find the address of a program label in the
Amiga's memory. For example:

;
;An example of finding the address of a program label
;
MOVE #10,There ;wo! assembly code on this line
NPrint Peek.w(?There)
MouseWait
End
;
There:Dc.w 0 ;wo! and again here

These features are really only of use to programmers with some assembly
language experience who need unconventional means for their ends.

Constants

A 'constant', in BASIC programming terms, is a value which does not change
throughout the execution of a program. The 5 in a=5 is a constant.

A hash sign (#) before a variable name means that it is a constant (no longer a
variable!) and cannot change in value when the program is running.
#width=320 means the variable #width is a constant and will always be = 320.

53

Constants have the following properties:

. are faster than variables and do not require any memory

. make programs more readable than using numbers

. can be used in assembler

. can be used with conditional compiling evaluations

. can only hold integer values

. make it easier to change a constant amount used throughout a program

. can be altered through the source at compile time but NOT at runtime

The most important aspect of constants from a BASIC programmers point of
view is that any 'magic numbers' that appear throughout their code can be
replaced by meaningful words such as #width.

If the program ever has to be modified to work with a new width, instead of going
through all the source changing any mention of the numbers '320', the programmer
can just change the constant equate at the top of the program
#width=320 to #width=640 etc.

Conditional Compiling

allows the programmer to switch the compiler on and off as it reads through the source
code, controlling which parts of the program are compiled and which are not.
Conditional compiling is useful for producing different versions of the same software
without using 2 different source codes. It can also be used to cripple a demo version of
the software or produce different programs for different hardware configurations.

Tracking down bugs can also involve the use of conditional compiling, by turning off
any unnecessary parts of code it becomes easier to pinpoint where exactly the error is
occurring. However we hope the Blitz2 debugger will make this practice obsolete.

The conditional compiler directives are as follows:

CNIF -compiler on if numeric comparison is true, off otherwise
CSIF -compiler on if string comparison is true, off otherwise
CELSE -switch compiler from previous state on=>off off=>on
CEND -end of conditional block (restores previous state)
The compiler has an internal on/off switch, after a CNIF or CSIF comparison the
compiler switches on for true, off for false. A CELSE will toggle the compiler switch

54

and the CEND will restore the on/off state to that of the previous CNIF/CSIF.

CNIF/CEND blocks can be nested.

It´s important remember that CNIF directive only works with constant parameters - for
example, '5', '#test' - and not with variables. This is because Blitz2 must be able to
evaluate the comparison when it is actually compiling, and variables are not
determined until a program is actually run.

The following code illustrates using conditional compiling:

#crippled=] ;is a crippled version

NPrint "Goo Goo Software (c)1993"

CNIF #crippled=]
NPrint "DEMONSTRATION VERSION"

CELSE
NPrint "REGISTERED VERSION"

CEND
;
; and later on in the program...
;
.SaveRoutine
CNIF #crippled=0;only if not crippled
;
;do save routine
;
CEND
Return

The benefit over using a straight If crippled=0..EndIf is that the crippled version of the
above code will not contain the saveroutine in the object code so that there is no way it
can be un-crippled by hackers.

Conditional compiler directives come into their own when doing macro programming.

Macros

Macros are a feature usually only found in Assemblers or lower level programming
languages. They are used to save typing, to replace simple procedures with faster
'inline' versions, or at their most powerful to generate code that would be impractical
to represent with normal code.

A macro is defined in a Macro name..End Macro structure. The code between these

55

two commands is not compiled but placed in the compiler's memory.
When the compiler reaches a !macroname it then inserts the code defined in
the macro at this point of the source code.

The following code:

Macro mymacro
a=a+1
NPrint "Good Luck"

End Macro

NPrint "Silly Example v1.0"
!mymacro
!mymacro
MouseWait

is expanded internally by the the compiler to read:

NPrint "Silly Example v1.0"
a=a+1
NPrint "Good Luck"
a=a+1
NPrint "Good Luck"

MouseWait

Macro Parameters

To make things a little more useful, parameters can be passed in a macro call using the
squigly brackets { and }. These parameters, are firstly inserted into the macro text,
then the macro text is inserted into the main code.

When a macro is defined the use of the back apostrophe (above TAB key on Amiga)
before a digit or letter (1-9, a-z) marks the point where a parameter will be inserted.

The following illustrates passing two parameters to a macro:

Macro distance
Sqr('1 *'1 +'2*'2)

End Macro

NPrint !distance{20,30}

MouseWait

the compiler expands the nprint line to read:

56

NPrint Sqr(20*20+30*30)

replacing every '1 with the first parameter and '2 with the second etc.

If there are more than 9 parameters letters are used: 'a signifying the
tenth parameter' b the eleventh and so on.

Parameters can be any text, the { 20,30 } could just as easily been { x,y }
in the previous example.

Note: when passing complex expressions as parameters care should be taken
to make sure parenthesis are correct:

!distance{x*10+20,(y*10+20)}

will expand to

Sqr(x*10+20*x*10+20+(y*10+20)*(y*10+20)}

The above does not expand correctly for the first half. Due to the parenthesis around
the second parameter the second half does expand properly.

The 'O Parameter

'O parameter is special, it returns the number of parameters passed to macro. This is
useful for both checking to see that the correct number of parameters was passed as
well as generating macros that can handle different numbers of parameters.
The following macro checks to see if two parameters were passed and
generates a compile time error if there was not:

Macro Vadd
CNIF '0=2

'1='1+'2
CELSE

CERR "Illegal number of '!Vadd' Parameters"
CEND
End Macro

!Vadd{a}

If you compile & run this program, you will see that it generates an appropriate error
message when '!Vadd{a)' is encountered. The CERR compiler directive is a special
directive used to generate a custom error message when a program is compiled.
Recursive Macros

57

Macros are recursive and can call themselves, the following macro prints the first
parameter and then calls itself, minus the first parameter, effectively stepping through
the list of parameters passed until a null character (no parameter) reached.

Macro dolist ;list upto 16 variables
NPrint '1
CSIF "'2">""
!dolist {'2,'3,'4,'5,'6,'7,'8,'9,'a,'b,'c,'d,'e,'f,'g}
CEND

End Macro
!dolist {a,b,c,d,e,f,g,h,i}
MouseWait

Replacing Functions with Macros

Macros are an excellent replacement for functions that don´t use any local variables
but need to generate more than one return variable. The following macro project takes
x, y, z coordinates and projects them onto a 2D x,y plane. It can then be used to
generate x,y projections for drawing.

Macro project #xm+'1*9-'2*6,#ym+'1*3+'2*1-'3*7 :End Macro

#xm=320 : #ym=256

Screen 0,28 :ScreensBitMap 0,0

For z=-1 5 To 1 5
For y=-15 To 15

Forx=-15 To 15
Circlef !project{x,y,z},3,x&y&z

Next
Next

Next

MouseWait

The CMake Character

A special character known as the cmake character can be used to evaluate
constant expressions and insert the literal result into your code. This can be very
useful for generating label and variable names when a combination of macro
parameters and constant settings are needed to generate the right label.

58

varR=20
varB=30

Macro Ivar
NPrint var~'1~

End Macro

!Ivar(2+1)

MouseWait

Above example without the cmake characters~ would print 21 as Blitz would expand
the code after NPrint to read var2+1, instead it evaluates the expression between
cmake characters and generates 3 which it then inserts into the macro text.

Inline Assembler

It is possible to include 68000 machine code inside Blitz2 programs using the inline
assembler. This offers the experienced programmer a way of speeding up their
programs by replacing certain routines with faster machine code equivalents.

There are three methods of including assembler in Blitz2:

. in line using the GetReg and PutReg commands to access variables

. inside statements and functions

. developing custom Blitz2 libraries

GetReg & PutReg
The GetReg and PutReg commands allow assembly programmer access to the BASIC
variables in the program. Following listing illustrates the use of GetReg and PutReg:

a.w=5 ;use words
b.w=10
GetReg d0,a ;value of a=>d0
GetReg d1,b ;value of b=>d1
MULU d0,d1
PutReg d1,c.w ; value of d1=>c
NPrint c
MouseWait

Next example inverts first bitplane of bitmap 0. Note how any complex expression can
be used after a GetReg command. Because GetReg can only use data registers, we
place the location of the bitmap structure in d0 and then move it to a0.

59

Screen 0,3
ScreensBitMap 0,0
While Joyb(0)=0

VWait 1 5
Gosub inverse

Wend
End

inverse: ;memory location of bitmap struct=>d0
GetReg d0,Addr BitMap(0)
MOVE.l d0,a0
MOVEM (a0),d0-d1
MULU d0,d1
LSR. 1#2,d1
SUBQ #1,d1
MOVE.l d(a0),a0

loop:
NOT.l (a0)+
DBRA d1,loop

Return

Using Assembler with Procedures

A more efficient method of using assembler in Blitz2 is to put machine code routines
inside functions and statements. Parameters are automatically placed in d0-d5 and
if using functions, the value in register d0 will be returned to the calling routine.

The following listing illustrates the use of assembler in a statement qplot{} which sets
a pixel on the first bitplane of the bitmap supplied.
Note how more than one assembly instruction can be used per line of source code.

Statement qplot{bmap.l,x.w,y.w}

MOVE.l d0,a0:MULU (a0),d2
MOVE.l d(a0),a0:ADD.l d2,a0
MOVE d1,d2:LSR#3,d2:ADD d2,a0:BSET.b d1,(a0)
AsmExit

End Statement

Screen 0,1
ScreensBitMap 0,0
bp.l=Addr BitMap(0)
For y.w=0 To 199

For x.w=0 To 319

60

qplot{bp,x,y}
Next

Next
MouseWait

Programmers wanting to develop their own libraries of machine code routines should
purchase the Blitz2 advanced programmers pack from Acid Software. Blitz2 contains
an powerful library system giving the experienced machine code programmer a highly
productive and powerful environment to develop advanced software.

9. PROGRAMMING TECHNIQUE & OPTIMIZING

Label and Variable Names

Following are rules to when using variable and label names in Blitz2.

. names can be of any length

. they must start with a letter (a..z, A..Z) or an underscore

. must only contain alphanumeric chars and underscores

. must not start with the same letters as any Blitz2 command

Also, label and variable names in Blitz2 are always treated as case-sensitive, this
means that the variables myship and MyShip are entirely different.

Style

There are many variable and label naming approaches that can make programming
much easier. The following are a few guidelines that can help keep things in control
as your program grows in size and more and more variables and labels are in use.
Consistency is essential, if you use any of the following styles, stick to them.

By separating different groups of variables and labels with the following methods,
names can have added meaning.

. full caps "NAME", inital cap "Name" and lower case "name"

. letters "l", words "Loop" and double words "MainLoop"

. initial underscore "_loop" and mid underscores "main_loop"

. numeric suffixes such as "loop!", "loop2" etc.

61

Nomenclature is a personal this by sticking to a certain style with variable and label
names many debugging problems can be avoided. Using good names for everything can
make your program far more readable and wild greatly aid in finding mistakes.

Common naming related problems

Following is a summary of certain problems that can arise when variable and label
names become messy.

Using the wrong variable name will often not flag an error. If it has not previously been
assigned, Blitz2 will create a new variable with a default value of zero. Avoiding a mix
of different naming styles will greatly reduce these mistakes.

Forgetting variable names can slow program development, by using logical names and
keeping a list of your main variables on a scrap of paper next to your keyboard helps
keep things organised.

Using lengthy names can aid readability, however it will also increase incidents of
typing errors and slow development.

Use of rude or obscene labels can make programming a little more enjoyable,
however it should be avoided if your source code will be read by others.

Remarks and Comments

Other BASIC's use REM statement but Blitz2 uses semicolon character. Text after ;
on a line will be ignored by the compiler. This feature is used to document programs.

Adding remarks, the programmer can document each routine in program for future
reference. One of the main curses of programming is having to return to a section
of code developed earlier only to find you can not make head or tail of its logic.

Although it can seem a little tedious, adding accurate explanations of each routine
as you write it will save many headaches later.

A section of documentation at the top of programs is also useful, copyright information,
lists of bugs fixed and when as well as full descriptions of all main variables should all
be maintained at the top of your program.

Structured programming techniques

Main technique in developing structured programs is a method known as indenting.
Indenting means that instead of each line being flush with the left margin, spacing
is inserted at the start of the line to 'indent' it across the page.

62

Indenting lines of code that are 'nested' inside loops or other program flow structures
creates a useful aid in visualizing the structure of your source code.

Blitz2 editor has features for indenting code. Tab key is used to move cursor across the
page. By changing tab setting in Ted's defaults the size of indent can be altered.

By highlighting a block of code, block tab and untab (Amiga [and Amiga])
will move the whole block left or right.

Shift cursor left will move the cursor to the same indent as the line above. Keeping
things modular

There is nothing more valuable than good initial planning when it comes to
developing software. Breaking down your project into modular pieces before
you start is a must to avoid the creation of huge spaghetti nightmares.

After deciding on how each section of the program is going to function it is usually
best to start with the most difficult sections. Getting the hardest bits going first while
the program is small can save a lot of headaches in the long run.

Time spent waiting for your program to compile & initialize compounds itself when you
´re bug hunting or making small adjustments to certain section of code. In these
situations it is usually best to remove the code from the main program, spend an hour
writing a shell that you can test it in and then set about making it bullet proof.

A few things to keep in mind when developing routines:

. snake sure it will handle all possible situations called for

. convince yourself you are using the most efficient method

. keep it modular i.e. the routine must return to where it was called

. keep it well documented

. include comments regarding global variables and arrays it uses

. make sure it's bullet proof (won't fall over with bad parameters)

. indent nested code and limit lengths of lines to aid readability

Along the way...

Besides keeping routines well documented it´s always a good idea keep a piece of
paper handy to write the important bits. Lists of variables that are common between
routines as well as things 'to do' in unfinished routines should always be written.

63

The 'to do' list is always a good way of thinking out all problems in advance. Always
keep in mind what extra routines will be needed to implement next one on the list.

One of the biggest mistakes a programmer can make is start a routine that needs all
sorts of other routines to function. By starting with the standalone/ independent bits
you can make sure they are working. This keeps you well clear of the headaches
caused where you have just added 5 routines, tested none of them and are trying to
find a bug which could be located in any of them. Developing a modular approach to
programming is definately the most effective way of finishing a piece of software.

Keeping your code readable.

Keeping your code readable is next on the list of requirements that will aid in the
completion of a piece of software.

The two main keys to readability are indenting nested code and keeping the
amount of code on one line to a minimum.

The following is an illustration of indenting nested code:

If ReadFile (0,"phonebook.data")
Filelnput 0
While NOT Eof(0)

If Additem(people())
For i=0 To #num-1
\info[i]=Edit$(128)
Next

Endif
Wend

Endif

This method means that it´s easy to see at a glance what code is being executed inside
each structure. Using this method it´s difficult to make a mistake like leaving out the
terminating EndIf or Wend's as just by finding the line above at the same level of
indentation we can match up each Wend with it's corresponding While etc.

Optimising Code

It is always important to have a firm grasp on how much time is being taken by certain
routines to do certain things. The following are a few things to keep in mind when
trying to get the best performance from your Blitz2 programs.

Performance is most important with arcade type games where a sluggish program will
invariably destroy the playability of the game. However, it is also important in

64

applications and other types of software to keep things as efficient as possible.
Anything that makes user wait will detract from productivity of package in general.

Algorithms

The most Important key to optimising different routines is the overall approach taken
to implementing them in first place. There will always be half a dozen ways of
approaching a problem giving half a dozen possible solutions. In programming, it is
usually best to pick the solution that will produce the result in the quickest time.

Loops

When looking for ways to optimise a routine the best place to start is to examine the
loops (for..next, while..wend etc.). Time it takes to perform the code inside a loop is
multiplied by number of times it loops. This may seem logical but often programmers
will equate the number of lines code in a routine to time taken to execute it.

For i=1 to 100
Nprint "hello"

Next

Will take exactly the same amount of time as typing:

For i=1 to 1
Nprint "hello"

Next

one hundred times, which will equate to 300 lines of code!

Once one can visualize loops expanded out, the notion that if anything can
be removed from inside a loop to before or after the loop then DO IT!

Lookup tables

Replacing numeric functions with look up tables is an effective way of gaining
excellent speed increases. A look up table or LUT for short, is an array that contains all
the possible solutions that the numeric function would be expected to provide.

The most common example of using LUPs for healthy speed increases is when using
trig functions such as Sine or Cosine. Instead of calling the Sin function, an array
containing a sine wave is created, the size of the array depends on the accuracy of the
angle parameter in your program.

If a was an integer variable containing an angle between 0 and 360 we could replace

65

any Sin functions such as x=Sin(a*130/pi) with x=siniup(a) which will of course be
more than 10 times as quick. Array would be setup in program as follows:

Dim siniup(360)
For i=0 To 360

sin|up(i)=Sin(i*180/pi)
Next

Using Pointers

When doing many operations on a particular subfield in a NewType a temporary
pointer variable of the same subfield type can be created and that used instead
of the larger (and slower) path name:

UsePath a(i)\alien\pos

replaced by:

UsePath *a
*a.pos=a(i)\alien

Testing Performance

Often it´s important test 2 different routines to see which offers the faster solution. The
easiest way is to call each of them 5000 times or so and time which is quicker.

When writing arcades that will be performing a main loop each frame, is useful to poke
background colour register before and after a specific routine to see how much of the
frame it is using.
The following will show how much of a frame it takes to clear a bitmap:

While JoyB(0)=0
VWait
CLS
move #$f00,$dff180 ;poke background colour red

Wend

Different colours can be used for different parts of the main loop.
Remember that at the top of each slice the background colour will be reset.

Optimising Games

A quality arcade game should always run to a 50th, meaning the main loop
always takes less than a frame to execute and so animation etc. are changed
every frame giving the game that smooth professional feel.

66

This time frame means the programmer will often have to sacrifice certain elements in
game and maybe reduce colours and size of shapes to get main loop fast enough.

The following are several methods for optimising code main loops in games:

Disable Runtime Errors in the compiler options when testing speed of code as
the error checker slows code dramatically.

Poke the background colour register with different values between main
routines to work out which ones are taking too long:

MainLoop:
VWait
Gosub movealiens
move.w #$f00,$dff180 ;turn background red
Gosub drawaliens
move.w #$f00,$dff180 ;turn background green

. Use QBlits as they are the fastest way of implementing animated graphics in Blitz2.

. If aliens change direction using complex routines, split aliens into groups and every
frame select a different group to have their directions changed, the others can move in
same direction until it´s their turn. This method applies to any routines that don´t have
to happen every frame but can be spread across several frames in tidy chunks.

. Decrease the size of display. During a frame, the display slows down processor and
blister. A smaller display increases amount of time given to processor and blister.

Those with fastmem and faster processors should remember that most people don´t
have either! It´s good idea disable fastmem when testing speed of your code.

10. PROGRAM EXAMPLES

Number Guessing

Following is a small program where computer guesses a random number and you have
to guess it in less than ten turns.

NPrint "I just picked a number from 0 to 100"
NPrint "I'll give you ten turns to guess it:"

a=Rnd(100)
n=1
Repeat

67

Print "Attempt #",n," ?"
b=Edit(10)
If b=a Then NPrint "Lucky Guess":Goto finish
If b<a Then NPrint "Too Small"
If b>a Then NPrint "Too Large"
n+1

Until n=11

NPrint "Out of turns!"

finish:

NPrint "Press mouse button to exit."
MouseWait

First , you'll find it pretty hard to guess the number, this is because the number Blitz
generates is not by default an integer and will hence include some fractional part.

Change the line a=Rnd(100) to either a.w=Rnd(100) or a=Int(Rnd(100)).

The .w suffix means the variable a is now a word type (an integer with range
- 32768..32767). If you use the Int function in the second option, a is still a quick type
but the random number has its fractional part chopped. When you use variables in
Blitz2 without a.type suffix they default to the quick type which is a number with range
-32768..32767 with 1/65536 accuracy. See the Variable Types section for a more
indepth discussion of this topic.

If you want all the variables in the program to default to the integer word
type, not quick then add the following line to the top of the program:

DEFTYPE .w fall variables without suffix default to words

As with other BASICs once the variable is used once. it s type is defined
and future references do not require the .type suffix.

Unlike other BASICs the Print command does not move the cursor to a new line
when finished, the command NPrint is used for this.

The Edit() function is used instead of the older input command.

Also the semicolon is used instead of the REMark command in Blitz2 and does
not retain any of it's older functionality in Print statements.

Creating a standalone Workbench programs

68

The number guessing program can be made to run from Workbench with its own
icon. Add the following lines to the start of your code.

The text after the semicolons are known as remarks, as mentioned, the
semicolon in Blitz2 replaces the old REMark command in older BASICs.

; Number Guessing Program

WBStartup ,necessary for prog to be run from WorkBench FindScreen 0
;get front most Intuition screen ; Window 0,0,0,320,210,$1000,"Hello World",1,2

When you compile&execute the program now, the window replaces the default
CLI for input and output.

One thing that you should replace is the b=Edit(10) function to: b=Val(Edit$(10))

This gets rid of default 0 character that appears in window form of Edit() function.

Ensure the Create Executable Icon option in the Compiler Options is set to ON.

Now, select Create Executable from compiler Menu or use the AmigaE shortcut.

Type the name of program you wish to create. You have now created your first stand
alone program with Blitz2, go to WB and click on new program's icon to test it.

A Graphic Example

Following program opens its own screen and draws what is known as a rosette, a
pattern where lines are connected between all the points around a circle.

;rosette example

n=20

NEWTYPE .pt
x.w:y

End NEWTYPE

Dim p.pt(n)

For i=0 To n-1
p(i)\x=320+Sin(2*i*Pi/n)*319
p(i)\y=256+Cos(2*i*Pi/n)*255

Next

69

Screen 0,25 , hires 1 colour interlace screen
ScreensBitMap 0,0

For i1=0 To n-2
For i2=i1+1 To n-1

Line p(i1)\x,p(i1)\y,p(i2)\-x,p(i2)\y,1
Next

Next

MouseWait

The NewType .pt defined in the program has two items or fields x & y. This means that
instead of dimming an array of x.w(n) and y.w(n) we can dim one array of p.pt(n)
which can hold the same information.

The backslash "\" character is used to access the separate fields of the newtype. The
first For..Next loop assigns the points of a circle into the array of points.

ScreensBitMap command allows us to draw directly onto screen with Plot, Line, Box
and Circle commands. Programs that use windows should not use this method, rather
they should draw into specific windows using WPlot, WLine WBox & WCircle.

Using Menus and the Blitz2 File Requester

Following program opens its own screen & window, attaches a menu list, and
depending what user selects from menus, either opens a Blitz file requester or exits.

; A Simple File Requester example

Screen 0,11,"Select A Menu" ;open our own intuition screen

MenuTitle 0,0,"Project" ;setup a menu list
Menultem 0,0,0,0,"Load ","L"
Menultem 0,0,0,1,"Save ","S"
Menultem 0,0,0,2,"Quit ","Q"

MaxLen path$=192 ;MUSTbe executed before a file requester is used
MaxLen name$=192

;Set up a BACKDROP (ie - invisible) window
Window 0,0,0,320,200,$1900,"",1,2
WLocate 0,20 ;move cursor to top left of window
SetMenu 0 ;attach our menu list to our window
Repeat

70

Select WaitEvent
Case 256 fits a menu event!

Select ItemHit

Case 0 ;load,its item 0 which means load
p$=FileRequest$("FileToLoad",path$, name$)
NPrint "Attempted to Load ",p$

Case 1 ;save fits item 1 which means save
p$=FileRequest$(" FileToSave",path$, name$)
NPrint "Attempted to Save ",p$

Case 2 ;its item 2 which means quit
End

End Select
End Select

Forever

MaxLen command is used to allocate a certain amount of memory for a string variable
in Blitz2. This is necessary so that the two string variables required by the file
requester command are large enough for the job.

Menus created by the MenuTitle and Menultem commands are attached to the
Window using the SetMenu command.

The Select..Case..End Select structures are best way of handling information coming
from a user. When user selects a menu, closes a window, clicks a gadget an 'event' is
sent to program. Usually an application program will use WaitEvent which makes
program 'sleep' until user does something. When multitasking, a program that is
'asleep' will not slow down the execution of other programs running.

Once an event is received, the event code returned by WaitEvent specifies what type of
an event occurred. A menu event returns 256 ($100 hex), a close window event returns
512 ($200 hex). A full list of events and their IDCMP codes is listed on page 25-5 of the
Blitz2 reference manual.

String Gadgets

Following program demonstrates use of string gadgets. These allow user to enter text
via the keyboard.Following sets 3 string gadgets for decimal, hex and binary I/O.

When the user types a number into one of the gadgets and hits return, the program
receives a gadgetup event. The GadgetHit function returns which gadget caused the
event. Program then converts the number the user typed into other number systems

71

(decimal, hex or binary) and displays the results in each of the string gadgets.

The ActivateString command means the user does not need to click on the
gadget to reactivate it so that they can type in another number.

;decimal hex binary converter

FindScreen 0

StringGadget 0,64,12,0,0,18,144
StringGadget 0,64,26,0,1,18,144
StringGadget 0,64,40,0,2,18,144

Window 0,100,50,220,56,$1008,"BASE CONVERTER",1,2,0

WLocate 2,04:Print "DECIMAL"
WLocate 2,18:Print " HEX$"
WLocate 2,32:Print "BINARY%"

DEFTYPE.l value

Repeat
ev.l=WaitEvent
If ev=$40 ;gadget up

Select GadgetHit
Case 0

value=Val(StringText$(0,0))
Case 1

r$=UCase$(StringText$(0,1))
value=0:i=Len(r$):b=1
While i>0

a=Asc(Mid$(r$,i,1))
If a>65 Then a-55 Else a-48
value+a*b
i-1 :b*16

Wend
Case 2

r$=StringText$(0,2)
value=0:i=Len(r$) b=1
While i>0

a=Asc(Mid$(r$,i,1))-48
value+a*b i-1 : b*2

Wend
End Select
ActivateString 0,GadgetHit

72

SetString 0,0,Str$(value)
SetString 0,1,Right$(Hex$(value),4)
SetString 0,2,Right$(Bin$(value),16)
Redraw 0.0 : Redraw 0.1 Redraw 0 2
Endif

Until ev=$200

Prop Gadgets

Following program creates a simple RGB palette requester, allowing user to adjust the
colors of the screen. PropGadgets can be thought of as sliders, in this example we
create three vertical PropGadgets to represent the Red, Green and Blue components of
the current color register selected.

The 32 color registers are represented with 32 text gadgets. The gadget's colour is set
by changing GadgetPens before the gadget is added to the gadget list. Using
GadgetJam I the two spaces are shown as a block of colour.

; simple palette requester

FindScreen 0

For p=0 To 2
PropGadget 0,p*22+8,14,128,p,16,54

Next

For c=0 To 31 GadgetJam 1 : GadgetPens 0,c
x=c AND 7:y=lnt(c/8)
TextGadget 0,x*28+72,14+y*14,32,3+c," " ;<-2 spaces

Next

Window 0,100,50,300,72,$100A,"PALETTE REQUESTER",1,2,0

cc=0:Toggle 0,3+cc,0n:Redraw 0,3+cc

Repeat
SetVProp 0,0,1-Red(cc)/15,1/16
SetVProp 0,1,1 -Green(cc)/15,1/16
SetVProp 0,2,1 -Blue(cc)/15,1/16
Redraw 0,0:Redraw 0,1 :Redraw 0,2
ev.l=WaitEvent
If ev=$40 AND GadgetHit>2

Toggle 0,3+cc,0n:Redraw 0,3+cc
cc=GadgetHit-3
Toggle 0,3+cc,0n:Redraw 0,3+cc

73

Endif
If (ev=$20 OR ev=$40) AND GadgetHit<3

r.b=VPropPot(0,0)*16
g.b=VPropPot(0,1)*16
b.b=VPropPot(0,2)*16
RGB cc,15-r,15-g,15-b

Endif
Until ev=$200

Database Type Application

The following listing is a simple data base program to hold a list of names, phone
numbers and addresses.

The user interface can either be typed in as listed or created using the IntuiTools
tutorial later in this manual.

If a text file exists called phonebook.data we read it into a list, each item of the list has
been set up to hold 4 strings using the NewType person. Using a list instead of a
normal array means that we think of each record inside the list as connected to the
one before and the one after rather than just being an individual item. Blitz2 keeps an
internal pointer to the 'current' item and the various list commands enable us to
change that internal pointer and operate on the item it points to.

Phone book program

FindScreen 0

;the following is from ram:t as created in the intuitools tutorial

Borders On:BorderPens 1,2:Borders 4,2
StringGadget 0,72,12,0,1,40,239
StringGadget 0,72,27,0,2,40,239
StringGadget 0,72,43,0,3,40,239
StringGadget 0,72,59,0,4,40,239
GadgetJam 0:GadgetPens 1,0
TextGadget 0,8,75,0,10,"NEW ENTRY"
TextGadget 0,97,75,0,11,-1 <"
TextGadget 0,129,75,0,12, "<<"
TextGadget 0,161,75,0,13, ">>"
TextGadget 0,193,75,0,14,">1 "
TextGadget 0,226,75,0,15,"DIAL"
TextGadget 0,270,75,0,16,"LABEL"

SizeLimits 32,32,-1,-1

74

Window 0,0,24,331,91,$100E,"MY PHONE BOOK",1,2,0
WLocate 2,19:WJam 0:WColour 1,0
Print "Address"
WLocate 19,50
Print "Phone"
WLocate 27,3
Print "Name"

; and now we start typing...

#num=4 ;4 strings for each person

NEWTYPE .person
info$[#num]
End NEWTYPE

Dim List people.person(200)

USEPATH people()

; read in names etc from sequential file

If ReadFile (0, "phonebook. data")
Filelnput 0
While NOT Eof(0)

If Additem(people())
For i=0 To #num-1 :\info[i]=Edit$(128):Next

Endif
Wend

Endif

ResetList people()

;if empty add blank record

If NOT Nextitem(people()) Then Additem people()

refresh:
ref=0
For i=0 To #num-1

SetString 0,i+1,\info[i]:Redraw 0,i+1
Next
ActivateString 0,1 :VWait 5
Repeat

ev.l=WaitEvent
;

75

if ev=$200 ;close window event
Gosub update
If WriteFile (0,"phonebook.data");save data to file
FileOutput 0
ResetList people()
While Nextitem(people())

For i=0 To #num-1 :NPrint \info[i]:Next
Wend
CloseFile 0

Endif
Endif

If ev=64
If GadgetHit=#num Then ActivateString 0,1
If GadgetHit<#num Then ActivateString 0,GadgetHit+1

Select GadgetHit
Case 10

Gosub update:lf Additem(people()) Then ref=1
Case 11

Gosub update:lf Firstitem(people()) Then ref=1
Case 12

Gosub update:lf Previtem(people()) Then ref=1
Case 13

Gosub update:lf Nextitem(people()) Then ref=1
Case 14

Gosub update:lf Lastitem(people()) Then ref=1
End Select

Endif
Until ref=1
Goto refresh

Update:
For i=0 To #num-1 : \info[i]=StringText$(0,i+1) : Next : Return

List Processor for Exec based Lists

Following is an example of accessing OS structures. Before entering this program you
will need to add the AmigaLibs.res file to the Blitz 2 environment.To do this open the
Compiler Options requester from the Compiler Menu. Click in the Residents box and
type in AmigaLibs.Res.

By selecting ViewTypes from the compiler menu the entire set of structs should be
listed that are used by the Amiga's operating sy
First line of our program defines the variable exec as a pointer to type ExecBase. As
Amiga keeps the location of this variable in memory location 4 we can use the Peek.l

76

(long) command to read the 4 byte value from memory into our pointer variable.

Blitz2 now knows that exec points to an execbase structure and using the backslash
character we can access any of the variables in this stucture by name.

If you select ViewTypes from the compiler menu and type in ExecBase (case
sensitive) you can view all the variables in the execbase structure.

We then define another pointer type called *mylist.List. We can then use
this to point to any List found in execbase such as LibList or DeviceList.

An exec list consists of a header node and a series of link nodes that hold
the list of devices or libraries or what have you.

We point mynode at the lists first link node in the third line of code.

The next line loops through the link nodes until the node's successor=0
which means we have arrived back at the header node.

Peek$ reads ascii data from memory until a zero is found, this is useful for placing text
pointed to by a C definition such as *In_Name.b into Blitz 2's string work area.

We then point mynode at the next node in the list.

Exec list processor

*exec.ExecBase=Peek.1(4)

*mylist.List=*exec\LibList

*mynode.Node=*mylist\lh_Head

While *mynode\ln_Succ
a$=Peek$(*mynode\1n_Name)
NPrint a$
Amynode=*mynode\ln Succ
Wend

MouseWait

Prime Number Generator

77

Following program generates a list of prime numbers from 2 to a limit specified by user.
A list of all the prime numbers found is kept in a Blitz 2 List structure.

We begin by inputting the upper limit from the user using the default input
output and the edit() command, the numeric form of the edit$() command.

While..Wend structure is used to loop through the main algorithm until upper limit is
reached. The algorithm simply takes next integer, loops through the list of prime
numbers it has already generated until either finds a divisible number or it is too far
through the list (item in list is greater than square root of number being checked).

If the algorithm does not find a divisor in its search through the list it prints the new
prime and adds it to the end of the list.

Print "Primes to what value " ;find out limit to run program to
v=Edit(80) ;input numeric
If v=0 Then End ;if O then don't carry on
tab.w=0 : tot.w=0 ; reset counters
Dim List primes(v) ; dim a list to hold primes
p=2 ;add the number2 to ourlist
Additem primes()
primes()=p
While p<v ;loop until limit reached
p+1 ;increment p
flag=1 ;set flag
d=0
q=Sqr(p) ; set search limit
ResetList primes() ;loop through list
While Nextitem(primes()) AND d<q AND flag
d=primes()
flag=p MOD d
Wend
If flag<>0 ;if found print and add it to list

Print p,Chr$(9) ;chr$(9) is a TAB character
tab+1 : tot+1
If tab=10 Then NPrint "":tab=0
AddLast primes()
primes()=p

Endif
Wend
NPrint Chr$(10)+"Found ",tot," Primes between 2 & ",v
NPrint "Left Mouse Button to Exit"
MouseWait
Clipped Blits

78

Following program illustrates a method to clip bliss. When a shape is blitted outside the
area of a bitmap an error occurs. To have shapes appear half inside a bitmap and half
outside we use a larger bitmap and position the display inside. The size of the outer
frame is dependent on the size of the shapes that will be drawn.

In following example we are using 32x32 pixel shape and so need an extra 32 pixels all
round the bitmap. The Show 0,32,32 centres the display inside the larger bitmap.

We also have to use the extended form of the slice command as we are displaying a
bitmap wider than the display.

The RectsHit(x,y,1,1,0,0,320+32,256+32) function returns true if the shape is inside the
larger bitmap and should be blitted. If the shape was larger or it had a centred handle
the parameters would need to be changed to accomadate these factors.

The.makeshape routine creates a temporary bitmap to draw a patern and then
transfer it to a shape object using the GetaShape command.

BLITZ

Gosub makeshape

BitMap 0,320+64,256+64,3
Slice 0,44,320,256,$fff8,3,8,8,320+64,320+64
Show 0,32,32
While Joyb(0)=0
x.w=Rnd(1024)-512
y.w=Rnd(1024)-512
If RectsHit(x,y,1,1,0,0,320+32,256+32)
Blit 0,x,y
Endif
Wend

.makeshape:
BitMap 1,32,32,3
For i=1 To 15:Circle 16,16,i,1 : Next
GetaShape 0,0,0,32,32
Free BitMap 1
Return

Dual Playlield Slice

79

Following program demonstrate use of a dual playfield display. As described in previous
chapter dual playfield lets us display two bitmaps simultaneously using ShowF and
ShowB commands.

The macro rndpt simply inserts the code Rnd((i40),Rnd(5 12) into source each time it is
called. For instance Line !rndpt,!rndpt,Rnd(7) is expanded internally by compiler to:

Line Rnd(640),Rnd(512),Rnd(640),Rnd(512),Rnd(7)

Once again the extended from of the slice command has to be used with flags
set to $fffa giving us a lores dualplayfield scrollable display.

In dualplayfield we can think of having two displays, the ShowF command positions
the front display inside BitMap 1, the ShowB command positions the backdrop display
inside BitMap 0. Note that we must pass the x position of the other display with ShowF
and ShowB so that Blitz2 can calculate internal variables properly.

BLITZ

Macro rndpt Rnd(640),Rnd(512):End Macro

BitMap 0,640,512,3
For i=0 To 255

Line !rndpt,!rndpt,Rnd(7)
Next

BitMap 1,640,512,3
For i=0 To 255

Circlef!rndpt,Rnd(15),Rnd(7)
Next

Slice 0,44,320,256,$fffa,6,8,16,640,640
While Joyb(0)=0
VWait
x1 =160+Sin(r)*160
y1 =128+Cos(r)*128
x2=160-Sin(r)*160
y2=128-Cos(r)4128
ShowF 1,x1,y1,x2
ShowB 0,x2,y2,x1
r+.05
Wend

Double Buffering

80

Following code illustrates the use of a double buffered display, necessary to acheive
smooth moving graphics. The trick with double buffering is that while one bitmap is
displayed we can change the other without any glitches happening on the display.

VWait command waits for vertical beam to be at the top of display, which is when
we are allowed to swap the bitmaps being displayed without getting any glitches.

The db=1-db equation will mean that db alternates between 0 & 1 each frame.
We Show db, toggle it (db=1-db) and then Use Bitmap db, to acheive the "draw to one
bitmap while displaying the other" technique known as double buffering.

Because we have two bitmaps, we need two queues to use QBlit properly. QBlits work
by doing a normal Blit and storing the position of Blit in a queue. UnQueue command
will erase all parts of screen listed in the queue so we can draw the balls in their new
positions without leaving "trails" behind them from their old position.

The move #-1,$dffl80 pokes the background color to white, this allows us to see how
much of the frame has been taken since VWait to execute the code. If we increase the
number of balls, the moving and drawing loop will take longer than a frame (50th of a
second) and the white will start flashing as the poke will only be happening every
second frame. See chapter 10 for more thorough discussion of frame rates etc.

The only other thing I'll mention is the bounce logic used when the ball moves outside
the bitmap. We reverse the direction but also add the new direction to the position so
the program never attempts to Blit the shape outside of the bitmap.

BLITZ

n=25

NEWTYPE .ball
x.w : y : xa : ya

End NEWTYPE
Dim List b.ball(n-1)
While Additem(b())

b()\x=Rnd(320-32), Rnd (256-32), Rnd (4)-2, Rnd(4)-2
Wend

Gosub getshape

BitMap 0,320,256,3
BitMap 1,320,256,3
Queue 0,n
Queue 1,n
Slice 0,44,3

81

While Joyb(0)=0
VWait
Show db
db=1-db
Use BitMap db
UnQueue db
ResetList b()
USEPATH b()
While Nextitem(b())

\x+\xa : \y+\ya
If NOT RectsHit(\x,\y,1,1,0,0,320-32,256-32)
\xa=-\xa:\ya=-\ya
\x+\xa : \y+\ya

Endif
QBlit db,0,\x,\y

Wend
MOVE #-1,$dff180
Wend
End

.getshape:
BitMap 1,32,32,3
For i=1 To 15 : Circle 16,16,i,1 : Next
GetaShape 0,0,0,32,32
Free BitMap 1
Return

Smooth Scrolling

This final example demonstrates smooth scrolling as discussed in previous chapter.

Scroll commands are used to copy the left side of the bitmap to right and the top half
of the bitmap to bottom. This effect means large bitmap is the same in each quarter.

Because of this we can scroll display across the bitmap, and when hit the right edge
reset display back to the left edge without any jump in display as both left and right
sides of the bitmap are the same. This is same for scrolling display down the bitmap.

To be able to access mouse moves we need the Mouse On command. We can then take
 the amount the mouse has been moved by user and add it to the speed in which we are
moving the display around the bitmap.
The QLimit(xa+MouseXSpeed,-20,20) command makes sure that the xa (x_add)
variable always stays inside the limits -20..20.

82

The x=QWrap(x+xa,0,320) command means that when the displays position inside
the bitmap reached the right edge of the bitmap it wraps around to the left.

BLITZ
Mouse On
n=25
BitMap 0,640,512,3

For i=0 To 150
Circlef Rnd(320-32)+16,Rnd(256-32)+16,Rnd(16),Rnd(8)

Next

Scroll 0,0,320,256,320,0
Scroll 0,0,640,256,0,256

Slice 0,44,320,256,$fff8,3,8,8,640,640

While Joyb(0)=0
VWait
Show db,x,y
xa=QLimit(xa+MouseXSpeed,-20,20)
ya=QLimit(ya+MouseYSpeed, -20,20)
x=QWrap(x+xa,0,320)
y=QWrap(y+ya,0,256)
Wend

11. DISPLAY LIBRARY & AGA PROGRAMMING

Introduction

Display Library is a recent addition to Blitz. Developed as a replacement to Slices it not
only offers games programmers access to all of new AGA features but offers a slightly
more modular approach to controlling the Amiga's graphics hardware.

Amiga's display is controlled by the copper. The copper is a secondary processor that
executes a list of instructions every frame. For those new to such concepts, Amiga
redraws the screen 50 times a second, each redraw is known as a frame. The video
beam which sweeps across screen drawing each pixel is controlled by certain
hardware registers, these registers are poked by the copper whose job it is to keep
everything m sync. A coplist contains information about colours, bitplanes, sprites,
resolution and more that the video beam requires to render a typical display.

Initialising

Unlike Slices which appear as soon as they are initialised the display library requires

83

coplists to be initialised (using InitCopList) prior to a display being created (using
CreateDisplay). The important difference here is that Slices require memory to be
allocated each time a change to the video display is required while the Display library
allows multiple CopLists to be initialised before any displays are created.

There are two forms of the InitCopList command. The short version simply requires
the CopList# which is to be initialised and the flags. The height of the display will
default to 256 pixels high. A width of 320, 640 or 1280 will be used depending on the
resolution set in the flags as will the number of colors.

The longer version has the following format:

InitCopList CopList#,ypos,height, type,sprites,colors,customs
The ypos is usually set to 44 the standard top of frame for a PAL display. If CopLIst is to
be used below another coplist on the same display ypos should be set to 2 scan lines
below the last CopLists bottom line.

Sprites should always be set to eight, even if they are not all available, colors should
be set to the number required. When using more than 32 colours ensure that the
#agacolors flag MUST be set.

Customs allocate enough room for advanced custom copper lists to be attached to
each display. See later on in this chapter for a discussion on using customcops.

Flags used with InitCopList

The flags value is calculated by adding the following values together.

Note: Variables must be long (32 bits) when used as the flags parameter for the
InitCoplist command.

#onebitplane= $01
#twobitplanes= $02
#threebitDlanes= $03
#fourbitplanes= $04
#fivebitplanes= $05
#sixbitplanes= $06
#sevenbitplanes= $07*
#eightbitplanes= $08*

#smoothscrolling= $10 ;set if you will be scrolling the bitmap
#dualplavfield= $20 ;enable dual playfield mode
#extrahalfbrite= $40 ;forces 6 bitplane display into ehb mode
#ham= $80 ;display in ham

84

#lores= $000
#hires= $100
#superhires= $200

#loressprites= $400
#hiressprites= $800*
#superhiressprites= $c00

#fetchmode0= $0000
#fetchmode1 = $1000*
#fetchmode2= $2000*
#fetchmode3= $3000*

#agacolors= $10000*

* These flags should only be used with AGA Amigas.

Colors
The #agacolors flag must ALWAYS be set when more than 32 colours are in use
or when 24 bit color definition is required.

SmoothScrolling
By setting the smooth scrolling flag the extended form of DisplayBitmap may be used
which allows the bitmap to be displayed at any offset. This enables the programmer to
scroll the portion of the bitmap being displayed. See BlitzMode programming chapter
for an explanation of hardware scrolling.

Notes:

* Always use the extended form of DisplayBitmap with smoothscrolling set,
 even when offset is 0,0.
* DisplayBitmap accepts quick types for the x offset and will position the
 bitmap in fractions of pixels on AGA machines.

* The width of the display will be less than the default 320/640/1280 when
 smooth scrolling is enabled.

DualPlayfield
By setting the DualPlayfield flag two bitmaps may be displayed on top of each other in
one display. A combination of DualPlayfield and SmoothScrolling is allowed for parallax
type effects. Note that with AGA machines, it is possible to display two 16 colour
bitmaps by enabling DualPlayfield and setting number of bitmaps to 8.
Sprites
The number of sprites available will depend on the type of display and the fetchmode
settings Most AGA modes will require the display to be shrunk horizontally for 8 sprites

85

to be displayed. Currently this can only be acheived using the DisplayAdjust command,
certain examples of this can be found on the Blitz examples disk.

AGA hardware allows the programmer to display sprites in lores, hires or superhires.
The higher resolutions allow graphics dithering by the artist, essential if 3 coloured
sprites are in use. Larger sprites are also available using the SpriteMode command.
Dithered large, super hi-res sprites can be created to look better than lower resolution
16 color sprites using such tools as ADPro.

Note that it is unrealistic to display more than 4 bitplanes and have more than 3 sprite
channels available, the adjust required results in a very narrow display indeed.

FetchMode
AGA hardware allows bitplane data to be fetched by the DMA in 16,32 or 64 pixel
groups. The larger fetches give the processor more bandwidth, this is especially
noticeable with AGA Amiga's running without additional fastmem.

Using increased fetchmodes bitplanes must always be a multiple of 64 pixels wide.

Those wanting to attempt DisplayAdjusts on displays with larger fetchmodes will
encounter severe difficulties in creating a proper display. We think it is actually
impossible for displays to run at fetchmode 3 with more than 1 sprite without having to
adjust the display to around 256 pixels across.

Multiple Displays
When more than one CopList is to be displayed care must be taken that there
is a gap of at least 3 lines between each. This means the ypos of a lower
coplist must be equal or greater than the above's ypos+height+3.

Advanced Copper Control
The long format of the InitCopList command allows allocation for custom copper
commands. Certain commands have been added to the Display Library which will
require this parameter to be set.

There are two forms of custom copper commands, the first will allow the copper to

affect the display every scanline while the second defines a certain line for the
copper to do it's thing. These new commands include:

Following require a negative size, this denotes that so many instructions must be
allocated for every scanline of the display.

DisplayDblScan CopList#,Mode[,CopOffset] ;(size=-2)
DisplayRainbow CopList#,Register,Palette[,CopOffset] ;(ecs=-1 aga=-4)
DisplayRGB CopList#,Register,line,r,g,b[,CopOffset] ;(ecs=-1 aga=-4)

86

DisplayUser CopList#,Line,String[,CopOffset] ;(size=-len/4)
DisplayScroll CopList#,&xpos.q(n),&xpos.q(n)[,CopOffset] ;(size=-3)

The following require the size be specified as a positive parameter denoting that so
many instructions be allocated for each instance of each command. Note that these
two commands may NOT be mixed with the commands above.

CustomColors CopList#,CCOffset,YPos,Palette,startcol,numcols
CustomString CopList#,CCOffset,YPos,Copper$

Use of these commands is illustrated by code included in Blitz examples drawer.

Display Example 1

This first example creates two large bitmaps. It renders lines to one and boxes on the
other. A 32 color palette is created the first 16 colors are used by the back playfield
and second 16 by thr front piayfield.

The flags in the InitCopList command are the sum of the following:

#eightbitplanes= $08
#smoothscrolling= $10
#dualplayfield= $20
#lores= $000
#fetchmode3= $3000*
#agacolors= $10000*

InitCopList can be executed before going into Blitz mode. All display commands are
mode independent except CreateDisplay which can only be executed in Blitz mode.

Finally note the extended form of the DispiayBitmaD command. This allows the offset
position of both bitmaps to be assigned with the one command.

; two 16 color playfield in dualplayfield mode
;
BitMap 0,640,512,4
BitMap 1,640,512,4

For i=0 To 100
Use BitMap 0: Box Rnd(640) Rnd(512) Rnd(640) Rnd(512) Rnd(16)
Use BitMap 1: Line Rnd(640),Rnd(512),Rnd(640),Rnd(512),Rnd(16)

Next

InitPalette 0,32
For i=1 To 51 : AGAPalRGB 0,i,Rnd(256),Rnd(256),Rnd(256):Next

87

InitCopList 0,$13038

BLITZ

CreateDisplay 0
DisplayPalette 0,0

While Joyb(0)=0
VWait
x=160+Sin(r)*160:y=128+Cos(r)*128
DisplayBitMap 0,0,x,y,1,320-x,256-y
r+.05

Wend

End

Display Example 2

This 2nd example demonstrates the use of sprites on a Display. DisplayAdjust is
required so as to allow us access to all 8 sprite channels. Unfortunately it is difficult
to up the fetch mode in this example without resorting to a very thin display.

SpriteMode2 tells Blitz to create 64 pixel wide sprites for each channel. Each sprite
would require 4 channels without SpriteMode, one of the better new features of AGA.

It should be noted also that the DisplaySprite command also accepts fractional x
parameters and will position the sprite at fractional pixel positions if possible.

;
; smoothscrolling 16 color screen with 8x64 wide sprites
;
SpriteMode 2
InitShape 0,64,64,2:ShapesBitMap 0,0
Circlef 32,32,32,1 :Circle7 16,8,6,2:Circlef 48,8,6,3:Circlef 32,32,8,0
GetaSprite 0,0

BitMap 0,640,512,4

For i=0 To 100
Use BitMap 0 : Box Rnd(640),Rnd(512),Rnd(640),Rnd(512),Rnd(16)

Next
InitPalette 0,48

For i=1 To 31 : AGAPalRGB 0,i,Rnd(256),Rnd(256),Rnd(256):Next

88

InitCopList 0,$10014

DisplayAdjust 0,-2,8,0,16,0; under scan!

BLITZ

CreateDisplay 0
DisplayPalette 0,0

For i=0 To 7
DisplaySprite 0,0,20+i*30,(20+i*50)&127,i

Next

While Joyb(0)=0
VWait
x=160+Sin(r)*160:y=128+Cos(r)*128
DisplayBitMap 0,0,x,y
r+.05

Wend

End

R-1: PROGRAM FLOW COMMANDS

A computer program is made up of a sequence of commands that are executed
sequentially (one after the other). Certain commands are used to interrupt this process
and cause program execution to jump to a different location in the program. There are
several different ways of controlling this program flow in Blitz.

BASIC commands to change program flow such as Goto, Gosub are standard in Blitz,
 unlike older BASIC's, locations are specified as program labels not line numbers.
Modern BASIC features such as Procedures (Statements & Functions), While..Wend,
Repeat..Until, Select..Case allow a more structured approach to programming.

Finally Blitz allows control over Interrupts, this allows external events to override
normal program flow and jump (temporarily) to a predefined location in the program.

Goto Program Label
Goto causes program flow to be transferred to the specified program label.
This allows sections of a program to be 'skipped' or 'repeated'.

Gosub Program Label
Gosub operates in two steps. First, the location of the instruction following the Gosub
is remembered in a special storage area (known as the 'stack'). Secondly, program

89

flow is transferred to the specified Program Label.

The section of program that program flow is transferred to is known as a
'subroutine' and should be terminated by a Return command.

Return
Return is used to return program flow to the instruction following the previously
executed Gosub command. This allows the creation of 'subroutines' which may be
called from various points in a program.

On Expression Goto| Gosub Program LabelLProgram Label...]
On allows a program to branch, via either a Goto or a Gosub, to one of a number of
Program Labels depending upon the result of the specified Expression.

If the specified Expression results in a 1, then the first Program Label will be branched
to. A result of 2 will cause the second Program Label to be branched to and so on. If
the result of Expression is less than one, or not enough
Program Labels are supplied, program flow will continue without a branch.

End
End will halt program flow completely. In case of programs run from Blitz editor, you
will be returned to editor. In case of executable files, will be returned to WB or CLI.

Stop
Stop command causes the Blitz Debugger to interrupt program flow. Place Stop
commands in your code as breakpoints when debugging, ensure runtime errors are
enabled. Click on Run from the debugger to continue program flow after a Stop.

If Expression [Then...]
If allows execution of a section of program depending on the result of an expression.
The Then command indicates only the rest of the line will be defined as the section of
code to either execute or not. Without a Then the section of code will be defined as
that up to the EndIf command.

Endif
EndIf is used to terminate an 'If block'. An If block is begun by use of If statement
without the Then present. Please refer to If for more information on If blocks.

Else [Statement..]
Else may be used after an If to cause program instructions to be executed
if the expression specified in the If proved to be false.
While Expression
While command is used to execute a series of commands repeatedly while
the specified Expression proves to be true. The commands to be executed

90

include all the commands following the While until the next matching Wend.

Wend
Wend is used in conjunction with While to determine a section of program to
be executed repeatedly based upon the truth of an expression.

Select Expression
Select examines and 'remembers' the result of the specified Expression. The
Case commands may then be used to execute different sections of program
code depending on the result of the expression in the Select line.

Case Expression
A Case is used following a Select to execute a section of program code when,
and only when, the Expression specified in the Case statement is equivalent
to the Expression evaluated in the Select statement.

If a Case statement is satisfied, program flow will continue until the next
Case Default or End Select statement is encountered, at which point program
flow will branch to the next matching End Select.

Default
A Default statement may appear following a series of Case statements to cause a
section of code to be executed if NONE of the Case statements were satisfied.

End Select
End Select terminates a Select...Case...Case...Case sequence. If program flow had
been diverted through the use of a Case or Default statement, it will continue from the
terminating End Select.

For Var=Expression 1 To Expression2 [Step Expression3]
The For statement initializes a For...Next loop. All For/Next loops must begin with a For
statement, and must have a terminating Next statement further down the program.
For..Next loops cause a particular section of code to be repeated a certain number of
times. The For statement does most of the work in a For/Next loop. When For is
executed, the variable specified by Var (known as the index variable) will be set to the
value Expressionl. After this, the actual loop commences.

At the beginning of the loop, a check is made to see if the value of Var has exceeded
Expression2. If so, program flow will branch to the command following For/Next loop's
Next, ending the loop. If not, program flow continues on until the loop's Next is
reached. At this point, value specified in Expression3 ('step' value) is added to Var, and
program flow is sent back to the top of the loop, where Var is again checked against
Expression2. If Expression3 is omitted, a default step value of 1 will be used.

91

In order for a For/Next loop to count 'down' from one value to a lower value,
a negative step number must be supplied.

Next [var[,Var..]]
Next terminates a For..Next loop. Please refer to the For command for more
information on For..Next loops.

Repeat
Repeat is used to begin a Repeat...Until loop. Each Repeat statement in a
program must have a corresponding Until further down the program.

The purpose of Repeat/Until loops is to cause a section of code to be executed AT
LEAST ONCE before a test is made to see if the code should be executed again.

Until Expression
Until is used to terminate a Repeat/Until loop. If Expression is true (non 0) program flow
will continue from the command following Until. If Expression is false (0)
program flow will go back to the corresponding Repeat,found further up the program.

Forever
Forever may be used instead of Until to cause a Repeat/Until loop to NEVER
exit. Executing Forever is identical to executing 'Until 0'.

Pop Gosub I For I Select I If I WhileI Repeat
Sometimes, it may be necessary to exit from a particular type of program loop in order
to transfer program flow to a different part of program. Pop must be included before the
Goto which transfers program flow out from the inside of the loop.

Actually, Pop is only necessary to prematurely terminate Gosubs, Fors and Selects. If,
While and Repeat have been included for completeness but are not necessary.

MouseWait
MouseWait halts program until left mouse button is pushed. If left mouse is already
held down when a MouseWait is executed, program will simply continue through.

MouseWait should normally be used only for program testing purposes, as
MouseWait severely slows down multi-tasking.

VWait [Frames]
VWait will cause program flow to halt until the next vertical blank occurs. Optional
Frames parameter may be used to wait for a particular number of vertical blanks.

VWait is especially useful in animation for synchrodizing display changes
with the rate at which the display is physically redrawn by the monitor.

92

Statement Procedurename{[Parameter1[,Paramater2...]]}
Statement declares all following code up to the next End Statement as being
a 'statement type' procedure.

Up to 6 Parameters may be passed to a statement in the form of local variables
through which calling parameters are passed.

In Blitz, all statements and functions must be declared before they are called.

End Statement
End Statement declares the end of a 'statement type' procedure definition.
All statement type procedures must be terminated with an End Statement.

Statement Return
Statement Return may be used to prematurely exit from a 'statement type' procedure.
Program flow will return to the command following the procedure call.

Function [. Type] Procedurename{[Parameter1[,Parameter2...]]}
Function declares all following code up to the next End Function as being a
function type procedure. The optional Type parameter may be used to determine what
type of result is returned by the function. Type. If specified, must be one Blitz's 6
primitive variable types. If no Type is given, the current default type is used.

Up to 6 parameters may be passed to a function in form of local variables through
which calling parameters are passed. Functions may return values through the
Function Return command.
In Blitz, all statements and functions must be declared before they are called.

End Function
End Function declares the end of a 'function type' procedure definition. All
function type procedures must be terminated with an End Function.

Function Return Expression
Function Return allows 'function type' procedures to return values to their calling
expressions. Function type procedures are called from within Blitz expressions.

Shared Var[,Var...]
Shared is used to declare certain variables within a procedure definition as being
global variables. Any variables appearing within a procedure definition that do n<>t
appear in a Shared statement are, by default, local variables.
Setint Type
Setint is used to declare a section of program code as 'interrupt' code. Often, when a
computer program is running,an event of some importance takes place which must be

93

processed immediately. Different types of interrupt on the Amiga are as follows:

Type Cause of Interupt

0 Serial transmit buffer empty
1 Disk Block read/written
2 Sottware interupt
3 Cia ports interupt
4 Co-processor ('copper') interupt
5 Vetical Blank
6 glitter finished
7 Audio channel 0 pointer/length fetched
8 Audio channel 1 pointer/length fetched
9 Audio channel 2 pointer/length fetched
10 Audio channel 3 pointer/length fetched
11 Serial receive butffer full
12 Floppy disk sync
13 External interupt

The most useful of these interrupts is the vertical blank interrupt. This interrupt
occurs every time an entire video frame has been fully displayed (about every sixtieth
of a second), and is very useful for animation purposes. If a section of program code
has been designated as a vertical blank interrupt handler, then that section of code will
be executed every sixtieth of a second.

Interrupt handlers must perform their task as quickly as possible, especially in case of
vertical blank handlers which must NEVER take longer than 1/6 of sec. to execute.

Interupt handlers in Blitz must NEVER access string variables or literal strings. In Blitz
mode, this is the only restriction on interrupt handlers. In Amiga mode, no blister,
Intuition or file I/O commands may be executed by interrupt handlers.

To set up a section of code to be used as an interrupt handler, you use the SetInt
command followed by the actual interrupt handler code. An End SetInt should follow
the interrupt code. The Type parameter specifies the type of interrupt, from the above
table, the interrupt handler should be attached to. For example, SetInt 5 should be
used for vertical blank interrupt code.
More than one interrupt handler may be attached to a particular type of interrupt.

End Setint
End SetInt must appear after a SetInt to signify the end of a section of interrupt
handler code. Please refer to SetInt for more information of interrupt handlers.
Clrlnt Type
ClrInt may be used to remove any interrupt handlers currently attached to specified
interrupt Type. SetInt is used to attach interrupt handlers to particular interrupts.

94

SetErr
The SetErr command allows you to set up custom error handlers. Program code
which appears after the SetErr command will be executed when any Blitz runtime
errors are caused. Custom error code should be ended by an End SetErr.

End SetErr
End SetErr must appear following custom error handlers installed using SetErr.
Please refer to SetErr tor more information on custom error handlers.

ClrErr
ClrErr may be used to remove a custom error handler set up using SetErr.

ErrFail
ErrFail may be used within custom error handlers to cause a 'normal' error.
The error which caused the custom error handler to be executed will be reported
and transfer will be passed to direct mode.

R-2: VARIABLE HANDLING COMMANDS

To keep track of numbers and text program variables are required. These variables are
assigned a name and given a type which dictates the sort of information they are able
to contain. Blitz supports 5 standard numeric types and the string type which is used to
store text type information.

Variable "arrays" are used to store a large collection of values all of one type, these
arrays are similar to normal variables except they must be dimensioned (the number
of elements defined) before they are used.

Blitz offers many extensions to these BASIC features. NewTypes may be defined which
are a collection of several standard types. A single NewType variable can contain an
assortment of numeric and string information similar to structures in C.

List arrays offer more control over standard arrays, they are also much faster to
manipulate. Blitz contains many commands for operating on linked lists of data.

Let Var=Expression
Let is an optional command used to assign a value to a variable. Let must always be
followed by a variable name and an expression.An equals sign ('=') is placed between
the variable name and the expression. If the equals sign is omitted, then an opertor
(eg: '+', '*') must appear between the variable name and the expression. In this case,
the specified variable will be altered by the specified operator and expression.

Exchange Var,Var

95

Exchange will 'swap' the values contained in the 2 specified variables.
Exchange may only be used with 2 variables of the same type.

MaxLen StringVar=Expression
MaxLen sets aside a block of memory for a string variable to grow into. This is normally
only necessary in the case of special Blitz commands which require this space to be
present before execution. Currently, only 2 Blitz commands require the use of MaxLen -
FileRequest$ and Fields.

DEFTYPE . Typename [Var[,Var...]]
DEFTYPE may be used to declare a list of variables as being of a particular
type. In this case, Var parameters must be supplied.

DEFTYPE may also be used to select a default variable type for future 'unknown'
variables. Unknown variables are variables created with no Typename specifier.
In this case, no Var parameters are supplied.

NEWTYPE.Typename
NEWTYPE creates a custom variable type and must be followed by a list of entry names
separated by ':' and/or newlines. NEWTYPE terminates using End NEWTYPE.

SizeOf.Typename[,Entrypath]
SizeOf allows you to determine the amount of memory, in bytes, a particular variable
type takes up. SizeOf may also be followed by an optional Entrypath, in which case the
offset from the start of the type to the specified entry is returned.

Dim Arrayname [List] (Dimension1[,Dimension2...])
Dim is used to initialize a BASIC array. Blitz supports 2 array types: simple arrays and
list arrays. The ptional List parameter, if present, denotes a list array. Simple arrays
are identical to standard BASIC arrays, and may be of any number dimensions. List
arrays may be of only 1 dimension.

ResetList Arrayname()
ResetList is used in conjunction with a list array to prepare the list array for NextItem
processing. After executing a ResetList, the next Nextitem executed will set the list
array's 'current element' pointer to the list array's very first

ClearList Arrayname()
ClearList is used in conjunction with list arrays to completely 'empty' out the specified
list array. List arrays are automatically emptied when they are Dimmed.

AddFirst (Arrayname())
AddFirst function allows you to insert an array list item at the beginning of an array
list. AddFirst returns a true/false value reflecting whether or not there was enough

96

room in the array list to add an element. If an array element was available, AddFirst
returns a true value (-1), and sets the list array's 'current item' pointer to the item
added. If no array element was available, AddFirst returns false (0).

AddLast (Arrayname())
AddLast function allows you to insert an array list item at the end of an array list.
AddLast returns a true/false value reflecting whether or not there was enough room in
the array list to add an element. If an array element was available, AddLast returns a
true value (-1), and sets the list array's 'current item' pointer to the item added. If no
array element was available, AddLast returns false (0).

Additem (Arrayname())
AddItem function allows you to insert an array list item after the list array's 'current'
item. AddItem returns a true/false value reflecting whether or not there was enough
room in the array list to add an element. If an array element was available, Additem
returns a true value (-1), and sets the list array's 'current item' pointer to the item
added. If no array element was available, Additem returns false (0).

KillItem ArrayName()
KillItem deletes the specified list array's current item. After executing KillItem, the list
array's 'current item' pointer will be set to the item before the item deleted.

Previtem (Arrayname())
Previtem will set the specified list array's 'current item' pointer to the item before the
list array's old current item. This allows for 'backwards' processing of a list array.
Previtem returns a true/false value reflecting whether or not there actually was a
previous item. If a previous item was available, PrevItem will return true (-1).
Otherwise, PrevItem will return false (0).

Nextitem (Arrayname())
Nextitem will set the specified list array's 'current item' pointer to the item after the
list array's old current item. This allows for 'forwards' processing of a list array.
Nextitem returns a true/false value reflecting whether or not there actually was a next
item available or not. If an item was available, Nextitem will return true (-1).
Otherwise, Nextitem will return false (0).

Firstitem (Arrayname())
Executing Firstitem will set the specified list array's 'current item' pointer to the very
first item in the list array. If there are no items in the list array, Firstitem will return
false (0) otherwise, Firstitem will return true (-1).

Lastitem (Arrayname())
Executing Lastitem will set the specified list array's 'current item' pointer to the very
last item in the list array. If there are no items in the list array, Lastitem will return

97

false (0), otherwise Lastitem will return true (-1).

Pushitem Arrayname()
Executing Pushitem causes the specified list array's 'current item' pointer to be pushed
onto an internal stack. This pointer may be later recalled by executing Popitem. The
internal item pointer stack is set for up to 8 'pushes'.

Popitem Arrayname()
Popitem 'pops' or 'recalls' a previously pushed current item pointer for specified list
array. Arrayname() must match the arrayname of most recently executed Pushitem.

ItemStackSize Max Items
ItemStackSize determines how many 'list' items may be pushed (using Pushltem),
before items must be 'Pop'ped off again. For example, executing ItemStackSize 1000
will allow you to push up to 1000 list items before you run out of item stack space.

SortList Arrayname()
SortList command is used to rearrange the order of elements in a Blitz linked list.
Order in which the items are sorted depends on the first field of the linked list type
which must be a single integer word. Sorting criteria will be extended in future.

Sort Arrayname()
Sort will cause the specified array to be sorted.

The direction of the sort may be specified using either the SortUp or SortDown
commands. Default direction used for sorting is ascending - ie: array elements are
sorted into a 'low to high' order.

SortUp
SortUp is used to force the Sort command to sort arrays into ascending order. Means
that after being sorted, an array's contents will be ordered in a 'low to high' manner.

SortDown
SortDown is to force the Sort command to sort arrays into descending order. Means
that, after being sorted, an array's contents will be ordered in a 'high to low' manner.

R-3: INPUT/OUTPUT COMMANDS

Input/Output is essential for programs to function. Input includes reading data from
both disk files and data statements and getting input from the user. Output options
include writing data to files, displaying information on the screen and so on.

Input and Output are most commonly acheived with the Edit and Print commands, Edit
replacing the standard BASIC Input nomenclature. An assortment of commands are

98

available to redirect input and output to and from Files, Windows etc. Refer to the File
and Window handling sections for more information.

Those developing games in Blitz should refer to the Blitz IO section for Input Output
commands more suited to their particular requirements.

Print Expression[,Expresion...]
Print allows you to output either strings or numeric values to current output channel.
Commands such as WindowOutput or BitMapOutput may be used to alter the current
output channel.

NPrint Expression[, Expresion...]
NPrint allows you to output either strings or numeric values to the current output
channel. Commands such as WindowOutput or BitMapOutput may be used to alter the
current output channel.

After all Expressions have been output, NPrint automatically prints a newline char.

Format FormatString
Format allows you to control the output of any numeric values by the Print or NPrint
commands. FormatString is an 80 character or less string expression used for
formatting information by the Print command. Special characters in FormatString are
used to perform special formatting functions. These special characters are:

Char Format effect

If no digit to print, insert spaces into output
0 If no digit to print, insert zeros ('0') into output
. Insert decimal point into output
+ Insert sign of value
- Insert sign of value, only if negative
, Insert commas every 3 digits to left of number

Any other characters in FormatString will appear at appropriate positions in
the output. Format also affects the operation of the Str$ function.

FloatMode Mode
FloatMode allows you to control how floating point numbers are output by the
Print or NPrint commands.

Floating point numbers may be displayed in one of two ways: exponential format or
standard format. Exponential format displays a FP number as a value multiplied by ten
raised to a power. For example 10240 expressed exponentially is '1.024E+4'

99

 ie: 1.024 x 10 to the power of 4. Standard format simply prints values 'as is'.

A Mode parameter of 1 will cause floating point values to ALWAYS be displayed in
exponential format. A Mode parameter of -1 will cause FP values to ALWAYS be
displayed in standard format. A Mode parameter of 0 will cause Blitz to take a 'best
guess' at the most appropriate format to use. This is the default mode for FP output.

Note that if Format has been used to alter numeric output, standard mode
will always be used to print floating point numbers.

Data [.Type]ltem[ltem...]
Data statement allows to include pre-defined values in programs.'data items' may be
transferred into variables using Read statement. When data is read into variables,the
Type of the data being read MUST match the type of the variable it is being read into

Read Var[,Var...]
Read is used to transfer items in Data statements into variables. Data is transferred
sequentially into variables through what is known as a 'date pointer'. When a piece of
data is read, data pointer is incremented to point at the next piece of data. Data pointer
may be set to point to a particular piece of data using the Restore command.

Restore [Program Label]
Restore allows you to set Blitz's internal 'data pointer' to a particular piece of data
after executing a Restore. The first item of data following specified Program Label will
become the data to be read when the next Read command is executed. Restore with
no parameters will reset data pointer to very first piece of data in program.

Edit$ ([DefaultString$],Characters)
Edit$ is Blitz's standard text input command. When used with Window and BitMap
Input Edit$ causes the optional DefaultString$ and a cursor to be printed to display. It
then waits for the user to hit RETURN. Edit$ returns the text entered by program user
as a string of character.

During FileInput Edit$ reads the next n characters from the open file or until the next
endofline character (chr$(10)). To read data from files that is not standard ascii (ignore
EOL terminators) Inkey$ should be used instead of Edit$. Characters specifies a
maximum number of allowable characters for input. This is extremely useful in
preventing Edit$ from destroying display contents.

Edit ([DefaultValue],Characters)
Edit is Blitz's standard numeric input command. The same characteristics
apply as those for Edit$ however Edit of course only accepts numeric input.

lnkey$ [(Characters)]

100

Inkey$ is used to collect one or more characters from the current input channel.
Current input channel may be selected using commands such as WindowInput,
Filelnput or BitMapInput. Inkey$ MAY NOT be used from Defaultinput input channel as
CLI does not pass input back to the program until the user hits return. Characters
refers to the number of characters to collect. The default is one character.

Defaultinput
Defaultinput causes all future Edit$ and Inkey$ functions to receive their input from CLI
window the Blitz program was run from. This is the default input channel used when a
Blitz program is first run.

DefaultOutput
DefaultOutput cause all future Print statements to send their output to CLI window the
Blitz program was run from. This is the default output channel used when a Blitz
program is first run.

FileRequest$ (Title$, Pathname$, Filename$)
FileRequest$ function will open up a standard Amiga-style file requester on currently
used screen. Program flow will halt until user either selects a file, or hits requester's
'Cancel' button. If a file was selected, FileRequest$ will return the full file name as a
string. If 'Cancel' was selected, FileRequest$ will return a null (empty) string.

Title$ may be any string expression to be used as a title for the file requester.
Pathname$ MUST be a string variable with a MaxLen of at least 160. Filename$ MUST
be a string variable with a MaxLen of at least 64.

Popinput
After input has been re-directed (eg using WindowInput/Filelnput), Popinput may be
used to return the channel to it's previous condition.

PopOutput
After output has been re-directed (eg using WindowOutput/FileOutput), PopOutput may
be used to return the channel to it's previous condition.

JoyX (Port)
Joyx will return the left/right status of a joystick plugged into the specified port. Port
must be either 0 or 1, 0 being the port the mouse is normally plugged into. If the
joystick is held to the left, Joyx will return -1. If the joystick is held to the right, Joyx
will return 1. If the joystick is held neither left or right, Joyx will return 0.

JoyY (Port)
Joyy will return the up/down status of a joystick plugged into the specified port. Port
must be either 0 or 1, 0 being the port the mouse is normally plugged into. If the

101

joystick is held upwards, Joyy will return -1. If the joystick is held downwrads, Joyy
will return 1. If the joystick is held neither upwards or downwards, Joyy will return 0.

Joyr (Port)
Joyr may be used to determine the rotational direction of a joystick plugged into the
specified port. Port must be either 0 or 1, port 0 being the port the mouse is normally
plugged into. Joyr returns a value from 0 through 8 based on the following table:

Direction Value
Up 0
Up-Right 1
Right 2
Down-Right 3
Down 4
Down-Left 5
Left 6
Up-Left 7
No Direction 8

Joyb (Port)
Joyb read button status of the device plugged into specified port. Port must be either
0 or 1, 0 being the port where mouse is normally plugged into. If left button is pressed,
Joyb will return 1. If right button is pressed, Joyb will return 2. If both buttons are
pressed, Joyb will return 3. If no buttons are pressed, Joyb will return 0.

GameB (Port#)
GameB returns the button states of CD32 style game controllers. The values of all
buttons pressed are added together to make up the value returned by GameB. To
check a certain button is down a logical AND should be performed, buttonvalue AND
returnvalue will evaluate to 0 if the button is not held down. The button values are:

.Button Value

Play/Pause 1
Reverse 2
Forward 4
Green 8
Yellow 16
Red 32
Blue 64

R-4: FILE HANDLING & IFF INFO COMMANDS

Blitz supports 2 modes of file access: sequential and random access. Following section

102

covers Blitz commands that open, close and operate these 2 types of files.

Blitz also contains special commands for finding information about ILBM files which are
standard on Amiga for containing graphics in the form of bitmaps and brushes.

For specialised commands that read and write graphics and sound files more
information and command descriptions are available in the appropriate sections.

OpenFile (File#,Filename$)
OpenFile attempts to open the file specified by Filename$. If file was successfully
opened, OpenFile will return true (-1), otherwise, OpenFile will return false (0).

Files opened using OpenFile may be both written to and read from. If the file specified
by Filename$ did not already exist before the file was opened, it will be created by
OpenFile.

Files opened with OpenFile are intended for use by the random access file
commands, although it is quite legal to use these files in a sequential manner.

ReadFile (File#,Filename$)
ReadFile opens an already existing file specified by Filename$ for sequential reading.
If the specified file was successfully opened, ReadFile will return true (-1), otherwise
ReadFile will return false (0).
Once a file is open using ReadFile, FileInput may be used to read information from it.

WriteFile (File#,Filename$)
WriteFile creates a new file, specified by Filename$ for the purpose of sequential file
writing. If the file was successfully opened, WriteFile will return true (-1), otherwise
WriteFile will return false (0).

A file opened using WriteFile may be written to by using the FileOutput command.

CloseFile File#
CloseFile is used to close a file opened using one of the file open functions (FileOpen,
ReadFile, WriteFile). This should be done to all files when they are no longer required.

Fields File#, Var[, Var...]
Fields set up fields of a random access file record. Once Fields is executed, Get and
Put are used to read and write information to and from the file. The Var parameters
specify a list of variables you wish to be either read from or written to the file.

When a Put is executed the values held in these variables will be transferred to the file.
When a Get is executed these variables will take on values read from the file.

103

Any string variables in the variable list MUST have been initialized to contain a
maximum number of characters. This is done using the MaxLen command. These
string variables must NEVER grow to be longer than their defined maximum length.

Put File#,Record
Put is used to transfer the values contained in a Fields variable list to a particular
record in a random access file. When using Put to increase size of a random access
file, you may only add to the immediate end of file. For example, if you have a random
access file with 5 records in it, it is illegal to put record number 7 to the file until
record number 6 has been created.

Get File#,Record
Get is to transfer information from a particular record of a random access file into a
variable list set up by Fields command. Only records which also exist may be'got'.

FileOutput File#
FileOutput causes output of all subsequent Print and NPrint commands to be sent to
the specified sequential file. When the file is later closed, Print statements should be
returned to an appropriate output channel (eg: DefaultOutput or WindowOutput).

Filelnput File#
FileInput command causes all subsequent Edit, Edit$ and Inkey$ commands to receive
their input from the specified file. When file is later closed, input should be redirected
to an appropriate channel (eg: DefaultInput or WindowInput).

FileSeek File#,Position
FileSeek allows you to move to a particular point in the specified file. The first piece of
data in a file is at position 0, the second at position 1 and so on. Position must not be
set to a value greater than the length of the file.

Used in conjunction with OpenFile and Lof, FileSeek may be used to 'append'to a file.

Lof (File#)
Lof will return the length, in bytes, of the specified file.

Eof (File#)
Eof function allows you to determine if you are currently positioned at the end of the
specified file. If so, Eof will return true (-1), otherwise Eof will return false (0).

If you are at the end of a file, any further writing to the file will increase it's length,
while any further reading from the file will cause an error.
Loc (File#)
Loc may be used to determine your current position in the specified file.
When a file is first opened, you will be at position 0 in the file.

104

DosBuffLen Bytes

All Blitz file handling is done through the use of special buffering routines. This is done
to increase the speed of file handling, especially in the case of sequential files.

Initially, each file opened is allocated a 2048 byte buffer. However, if memory is tight
this buffer size may be lowered using the DosBuffLen command.

KillFile Filename$
KillFile command will simply attempt to delete the specified file. No error will be
returned if the file could not be deleted.

CatchDosErrs
Whenever you are executing AmigaDos I/O (for example, reading or writing a file),
there is always the possibility of something going wrong (for example, disk not
inserted... read/write error etc.). Normally, when such problems occur, AmigaDos
displays a suitable requester on the WorkBench window. However, by executing
CatchDosErrs you can force such requesters to open on a Blitz window.

The window you wish dos error requesters to open on should be the currently
used window at the time CatchDosErrs is executed.

ReadMem File#,Address,Length
ReadMem allows to read a number of bytes, determined by Length, into an absoulte
memory location, determined by Address, from an open file specified by File#.

Be careful using ReadMem, as writing to absolute memory may have serious
consequences if you don't known what you're doing!

WriteMem File#,Address,Length
WriteMem allows you to write a number of bytes, determined by Length, from an
absolute memory location, determined by Address to an open file specified by File#.

Exists (FileName$)
Exists actually returns the length of the file, unlike Lof() Exists() is for files that have
not already been opened. If 0 the file either does not exist or is empty or is perhaps not
a file at all! Hmmm, anyway the following poke turns off the "Please Insert Volume
Blah:" requester so you can use Exists to wait for disk changes:

Poke.l Peek.l(Peek.l(4)+276)+184,-1
ILBMlnfo Filename$
ILBMInfo examines an ILBM file. Once ILBMInfo has been executed. ILBMWidth,
ILBMHeight and ILBMDepth examines properties of the image contained in file.

105

ILBMWidth
ILBMWidth will return the width (pixels) of an ILBM image examined with ILBMInfo.

ILBMHeight
ILBMHeight will return the height (pixels) of an ILBM image examined with ILBMInfo.

ILBMDepth
ILBMDepth will return the depth (bitplanes) of ILBM image examined with ILBMInfo.

ILBMViewMode
ILBMViewMode returns the viewmode of the file that was processed by ILBMInfo. This
is useful for opening a screen in the right mode before using LoadScreen etc. Different
values of ViewMode are as follows (add/or them for different combinations):

Mode Value
HiRes 32768
Ham 2048
HalfBrite 128
Interlace 4
LoRes 0

R-5: NUMERIC & STRING FUNCTIONS

This section covers all Blitz functions which accept and return numeric and string
values. Note that all the transcendental functions (eg. Sin, Cos) operate in radians.

Functions that return information about system time and date. Workbench
parameters and so forth are also listed in this section.

True
True is a system constant with a value of -1.

False
False is a system constant with a value of 0.

NTSC
This function returns 0 if the display is currently in PAL mode, or -1 if currently in
NTSC mode. This may be used to write software which dynamically adjusts itself to
different versions of the Amiga computer.

DispHeight
DispHeight will return 256 if executed on a PAL Amiga or 200 if on an NTSC Amiga. This
allows programs to open full sized screens, windows,etc on any Amiga.

106

VPos
VPos returns video's beam vertical position. Useful in both highspeed animation
where screen update may need to be synced to a certain video beam position (not just
the top of frame as with VWait) and for a fast random member generator in non frame-
synced applications.

Peek [.Type](Address)
Peek function returns the contents of the absolute memory location specified by

Address. The optional Type parameter allows peeking of different sizes. For example,
to peek a byte, you would use Peek.b; to peek a word, you would use Peek.w; and to
peek a long, you would use Peek.l

It is also possible to peek a string using Peek$. This will return a string of
characters read from consecutive memory locations until a byte of 0 is found.

Abs (Expression)
This function returns the positive equivalent of Expression.

Frac (Expression)
Frac() returns the fractional part of Expression.

Int (Expression)
This returns the Integer part (before the decimal point) of Expression.

QAbs (Quick)
QAbs works just like Abs except that the value it accepts is a Quick. This enhances
the speed at which the function executes quite dramatically. Of course you are limited
by the restrictions of the quick type of value.

QFrac (Ouick)
QFrac() returns the fractional part of a quick value. It works like Frac() but accepts a
quick value as it's argument. It´s faster than Frac() but has normal quick value limits.

QLimit (Quick,Low,High)
QLimit is used to limit the range of a quick number. If Quick is greater than or equal to
Low, and less than or equal to High, the value of Quick is returned. If Quick is less than
Low, then Low is returned. If Quick is greater than High, then High is returned.

QWrap (Ouick,Low,High)
QWrap will wrap the result of the Quick expression if Quick is greater than or equal
 to high, or less than low. If Quick is less than Low, then Quick- Low+High is returned.
If Quick is greater than or equal to High, then Quick-High+Low is returned.

107

Rnd [(Range)]
This function returns a random number. If Range is not specified then a random
decimal is returned between 0 and 1. If Range is specified, then a decimal value
between 0 and Range is returned.

Sgn (Expression)
Sgn returns the sign of Expression. If Expression is less than 0, then -1 is returned.
If Expression = 0 then 0 is returned. If Expression is > 0 then 1 is returned.

Cos (Float)
Cos() returns the Cosine of the value Float.

Sin(Float)
This returns the Sine of the value Float.

Tan (Float)
This returns the Tangent of the value Float.

ACos (Float)
This returns the ArcCosine of the value Float.

ASin (Float)
This returns the ArcSine of the value Float.

ATan (Float)
This returns the ArcTangent of the value Float.

HCos (Float)
This returns the hyperbolic Cosine of the value Float.

HSin (Float)
This returns the hyperbolic Sine of the value Float.

HTan (Float)
This returns the hyperbolic Tangent of the value Float.

Exp (Float)
This returns e raised to the power of Float.
Sqr (Float)
This returns the square root of Float.

Log10 (Float)

108

This returns the base 10 logarithm of Float.

Log (Float)
This returns the natural (base e) logarithm of Float.

QAngle (SrcX,SrcY,DestX,DestY)
QAngle returns the angle between the two 2D coordinates passed. The angle.q
returned is a value from 0-1, 1 representing 360 degrees in standard polar geometry.

Left$ (String$,Length)
This function returns the Length leftmost characters of string String$.

Right$ (String$,Length)
Right$() returns the rightmost Length characters from string String$.

Mid$ (String$,Startchar[Length])
This function returns Length characters of string String$ starting at character
Startchar. If the optional Length parameter is omitted, then all characters from
Startchar up to the end of String$ will be returned.

Hex$ (Expression)
Hex$() returns an 8 character string equivalent to hexadecimal representation of
Expression.

Bin$ (Expression)
Bin$() returns a 32 character string equivalent to a binary representation of
Expression.

Chr$ (Expression)
Chr$ returns a one character string equivalent to the ASCII character
Expression.Ascii is a standard way of coding the characters used by the
computer display.

Asc (String$)
Asc() returns the ASCII value of the first characters in the string String$.

String$ (String$,Repeats)
This function will return a string containing Repeats sequential occurrences of
the string String$.

Instr (String$,Findstring$[,Startpos])
Instr attempts to locate FindString$ within String$. If a match is found, returns the
character position of the first matching character. If no match is found, returns 0.

109

The optional Startpos parameter allows you to specify a starting character position
for the search.

CaseSense
CaseSense is used to determine whether the search is case sensitive or not.

Replace$ (String$,Findstring$,Replacestring$)
Replace$() will search the string String$ for any occurrences of the string Findstring$
and replace it with the string Replacestring$.

CaseSense is used to determine whether the search is case sensitive or not.

Mki$ (Integer)
This will create a two byte character string, given the two byte numeric value Numeric.
Mki$ is often used before writing integer values to sequential files to save disk space.
When the file is later read in, Cvi may be used to convert the string back to an integer.

Mkl$ (Long)
This will create a four byte character string, given the four byte numeric value Long.
Mkl$ is often used when writing long values to sequential files to save disk space.
When the file is later read in, Cvl may be used to convert the string back to a long.

Mkq$ (Quick)
This will create a four byte character string, given the four byte numeric value Quick.
Mkq$ is often used when writing quick values to sequential files to save disk space.
When the file is later read in, Cvq may be used to convert the string back to a quick.

Cvi (String$)
Cvi returns an integer value equivalent to the left 2 characters of String$.
This is the logical opposite of Mki$.

Cvl (String$)
Cvl returns a long value equivalent to the left 4 characters of String$.
This is the logical opposite of Mkl$.

Cvq (String$)
Cvq returns a quick value equivalent to the left 4 characters of String$.
This is the logical opposite of Mkq$.

Len (String$)
Len returns the length of the string String$.

110

UnLeft$ (String$,Length)
UnLeft$() removes the rightmost Length characters from the string String$.

UnRight$ (String$,Length)
UnRight$() removes the leftmost Length characters from the string String$.

StripLead$ (String$, Expression)
StripLead$ removes all leading occurrences of the ASCII character specified
by Expression from the string String$.

StripTrail$ (String$, Expression)
StripTrail$ removes all trailing occurrences of the ASCII character
specified by Expression from the string String$.

LSet$ (String$, Characters)
This function returns a string of Characters characters long. The string String$ will
be placed at the beginning of this string. If String$ is shorter than Characters the
right hand side is padded with spaces. If it is longer, it will be truncated.

RSet$ (String$, Characters)
This function returns a string of Characters characters long. The string String$ will be
placed at end of this string. If String$ is shorter than Characters the left hand side is
padded with spaces. If it is longer, it will be truncated.

Centre$ (String$,Characters)
This function returns a string of Characters characters long. The string String$ will be
centered in the resulting string. If String$ is shorter than Characters the left and right
sides will be padded with spaces. If it is longer, it will be truncated on either side.

LCase$ (String$)
This function returns the string String$ converted into lowercase.

UCase$ (Siring$)
This function returns the string String$ converted to uppercase.

CaseSense On l Off
Allows to control the searching mode used by the Instr and Replace$ functions.

CaseSense On indicates that an exact match must be found.

CaseSense Off indicates that alphabetic characters may be matched even if
they are not in the same case.

111

CaseSense On is the default search mode.

Val (String$)
This functions converts the string String$ into a numeric value and returns this value.
When converting the string, the conversion will stop the moment either a non numeric
value or a second decimal point is reached.

Str$ (Expression)
This returns a string equivalent of the numeric value Expression. This now allows you
to perform string operations on this string.

If the Format command has been used to alter numeric output, this will be applied
to the resultant string.

UStr$ (Expression)
This returns a string equivalent of the numeric value Expression. This now allows you
to perform string operations on this string.

Unlike Str$, UStr$ is not affected by any active Format commands.

SystemDate
SystemDate returns the system date as the number of days passed since 1/1/1978.

Date$ (days)
Date$ converts the format returned by SystemDate (days passed since 1/1/1978) into a
string format of dd/mm/yyyy or mm/dd/yyyy depending on the dateformat (defaults to 0)

NumDays (date$)
Numdays converts a Date$ in the above format to the day count format, where
numdays is the number of days since 1/1/1978.

DateFormat format# 0 or 1
DateFormat configures the way both date$ and numdays treat a string
representation of the date: 0=dd/mm/yyyy and 1=mm/dd/yyyy

Days
Days Months and Years each return the particular value relevant to the last call to
SystemDate. They are most useful for when the program needs to format the output
of the date other than that produced by date$. WeekDay returns which day of the
week it is with Sunday=0 through to Saturday=6.

Months See description of Days.

Years See description of Days.

112

WeekDay See description of Days.

Hours Hours, Mins and Secs return the time of day when SystemDate was last called.

Mins Hours, Mins and Secs return the time of day when SystemDate was last called.

Secs Hours, Mins and Secs return the time of day when SystemDate was last called.

WBWidth
The functions WBWidth, WBHeight, WBDepth & WBViewMode return the width, height,
depth & viewmode of the current WorkBench screen as configured by preferences.

WBHeight See Description of WBWidth.

WBDepth See Description of WBWidth.

WBViewMode See Description of WBWidth.

Processor
Processor returns the processor type in the computer on program is currently running.

0=68000
1=68010
2=68020
3=68030
4=68040

ExecVersion
ExecVersion returns the relevant information about the system´s program is running
on.

33=1.2
34=1.3
36=2.0
39=3.0

R-6: COMPILER DIRECTIVES & OBJECT HANDLING

The following section refers to the Blitz Compiler Directives, commands which affect
how a program is compiled. Conditional compiling, macros, include files and more are
covered in this chapter.

Information regarding control of Blitz Objects is also listed in this section. Objects

113

are Blitz's way of controlling speicalised data concerned with windows, shapes etc.

USEPATH Pathtext
USEPATH allows you to specify a 'shortcut' path when dealing with NEWTYPE
variables. Consider the following lines of code:

aliens()\x= 160
aliens()\y= 100
aliens()\xs= 10
aliens()\ys=-10

USEPATH can be used to save you some typing, like so:

USEPATH aliens()

\x=160
\y=100
\xs=10
\ys=-10
Whenever Blitz encounters a variable starting with the backslash character
('\'), it simply inserts the current USEPATH text before the backslash.

BLITZ
The BLITZ directive is used to enter Blitz mode. For a full discussion on Amiga/Blitz
mode, please refer to the programming chapter of the Blitz Programmers Guide.

AMIGA
The AMIGA directive is used to enter Amiga mode. For a full discussion on Amiga/Blitz
mode, please refer to the programming chapter of the Blitz Programmers Guide.

QAMIGA
The QAMIGA directive is used to enter Quick Amiga mode. For a full
discussion on Amiga/Blitz mode, please refer to the programming chapter of
the Blitz Programmers Guide.

INCLUDE Filename
INCLUDE is a compile time directive which causes the specified file,
Filename, to be compiled as part of the programs object code. The file must
be in tokenised form (de: saved from the Blitz editor) - ascii files may
not be INCLUDE'd. INCDIR may be used to specify a path for Filename.
Filename may be optionally quote enclosed to avoid tokenisation problems.

XINCLUDE Filename

114

XINCLUDE stands for exclusive include. XINCLUDE works identically to
INCLUDE with the exception that XlNCLUDE'd files are only ever included
once. For example, if a program has 2 XINCLUDE statements with the same
filename, only the first XINCLUDE will have any effect.

INCBIN Filename
INCBIN allows you to include a binary file in your object code. This is mainly of use
to assembler language programmers, as having big chunks of binary data in the middle
of a BASIC program is not really a good idea.

INCDIR Pathname
INCDIR may be used to specify a path for Filename. Filename may be optionally quote
enclosed to avoid tokenisation problems.

The INCDIR command allows you to specify an AmigaDos path to be prefixed to
any. Filenames specified by any of INCLUDE, XINCLUDE or INCBIN commands.

CNIF Constant Comparison Constant
CNIF allows you to conditionally compile a section of program code based on a
comparison of 2 constants. Comparison should be one of '<', '>', '=', '<>', '<=' or '>='.
If the comparison proves to be true, then compiling will continue. If comparison
is false no object code will be generated until a matching CEND is encountered.

CEND
CEND marks the end of a block of conditionally compiled code. CEND must
always appear somewhere following a CNIF or CSIF directive.

CSIF "String" Comparison "String"
CSIF allows you to conditionally compile a section of program code based on a
comparison of 2 literal strings. Comparison should be one of '<', '>', '=', '<>', '<='
or '>='. Both strings must be quote enclosed literal strings. If the comparison proves
to be true, then compiling will continue as normal. If the comparison proves to be
false, then no object code will be generated until a matching CEND is encountered.
CSIF is of most use in macros for checking macro parameters.

CELSE
CELSE may be used between a CNIF or CSIF, and a CEND to cause code to be
compiled when a constant comparison proves to be false.

CERR Errormessage
CERR allows a program to generate compile-time error messages. CERR is normally
used in conjunction with macros and conditional compiling to generate errors when
incorrect macro parameters are encountered.
Macro Macroname

115

Macro is used to declare the start of a macro definition. All text following Macro, up
until the next End Macro, will be included in the macro's contents.

End Macro
End Macro is used to finish a macro definition. Macro definitions are set up
using the Macro command.

Runerrson
These two new compiler directives are for enabling and disabling error checking
in different parts of the program, they override the settings in Compiler Options.

Runerrsoff See description of Runerrson.

Use Objectname Object#
Use will cause the Blitz object specified by Objectname and Object# to become
the currently used object.

Free Objectname Object#
Frees a Blitz object. Any memory consumed by the object's existence will be free'd
up, and in case of things such as windows and screens, the display may be altered.

Attempting to free a non-existent object will have no effect.

USED ObjectName
Returns the currently used object number. Useful for routines which need to operate
on currently used object, also interrupts should restore currently used object settings.

Addr Objectname(Object#)
Addr is a low-level function allowing advanced programmers the ability to find where a
particular Blitz object resides in RAM. Apendix at the end lists all Blitz object formats.

Maximum Objectname
The Maximum function allows a program to determine the 'maximum' setting
for a particular Blitz object. Maximum settings are entered into the OPTIONS
requester, accessed through the 'COMPILER' menu of the Blitz editor.

R-7: ASSEMBLER DIRECTIVES

A powerful feature of Blitz is it's built in assembler. This allows the programmer to
include machine code in their programs. You´ll find the ability to mix easily BASIC with
own lightning fast machine code routines making a powerful connection.

Thete are three ways of including assembler in Blitz programs.

116

Inline: using PutRrg and GetReg BASIC variables can be exchanged with the
68000's data and address registers.

Procedures: Statements and Functions can contain 100% assembler, parameters are
passed in registers d0..d5 and in case of Functions the value in D0 is returned to the
caller. The AsmlExit commmand is used in place of StatmentReturn or FunctionReturn.

Libraries Actual commands can be added to Blitz using assembler. see the libsdev
archive in the blitzlibs: volume fot more information.

Please note that when using assmbler inline and within procedures address
registers A4-A6 must be preserved. Blitz uses A5 as a global variable base. A4 as
a local variable base, and tries to keep A6 from having to be re-loaded too often.

Also note that Absolute Short addressing mode and Short Branches are not supported.

DCB [.Size] Repeats,Data
DCB stantd for 'define consistant block' .DCB allows you to insert a repeating
series of the satire value into your assembler programs.

EVEN
EVEN allows to word align Blitz's internal program counter. This may be necessary if a
DC, DCB or DS statement has caused the program counter to be left at an odd address.

GetReg 68000 Reg,Expression
GetReg allows you to tranfer the result of a BASIC expression to a 68000 register. The
result of the expression will first be converted into a long value before being moved to
the data register. GetReg should only be used to transfer expressions to one of the 8
data registers (d0-d7). GetReg will use the stack to temporarily store any registers
used in calculation of theexpression.

PutReg 68000 Reg, Variable
PutReg may he used to transfer a vlue from any 68000 register (d0-d7/a0-a7) into a
BASIC variable. If the specified variable is a string, long, float or quick, then all
4 bytes from the register will be transfered. If the specified variable is a word or a
byte, then only the relevant low bytes will be transferred.

SysJsr Routine
SysJsr allows you to call any of Blitz's system routines from your own program.
Routine specifies a routine number to call.

TokeJsr Token[,Form]
TokeJsr allows to call any of Blitz's library based routines. Token refers to either a

117

token number, or an actual token name. Form refers to a particular form of the token.

ALibJsr Token[,Form]
ALibJsr is only used when writing Blitz libraries. ALibJsr allows you to call a routine
from another library from within your own library. Please refer to the Library Writing
section of the programmers guide for more information on library writing.

BLibJsr Token[,Form]
BLibJsr is only used when writing Blitz libraries. BLibJsr allows you to call a routine
from another library from within your own library. Please refer to the Library Writing
section of the programmers guide for more information on library writing.

AsmExit
AsmExit is used to exit from functions and statements written in assembler.
Registers A4-A6 must be preserved in functions and statements written in assembler.

R-8: MEMORY CONTROL COMMANDS

This section deals with low-level commands which allow you access to the Amiga's
memory. Care must be taken when accessing memory in this way or an invitation to
 the alert guru may be mistakenly made.

Poke [.Type] Address,Data
The Poke command will place the specified Data into a absolute memory location
specified by Address. The size of the Poke may be specified by the optional Type
parameter. For example, to poke a byte into memory use Poke.b; to poke a word
into memory use Poke.w; and to poke a long word into memory use Poke.l

In addition, strings may be poked into memory by use of Poke$. This will cause the
ascii code of all characters in the string specified by Data to be poked, byte by byte,
into consecutive memory locations. An extra 0 is also poked past the end of the string.

Peek [. Type](Address)
The Peek function returns the contents of the absolute memory location specified by
Address. The optional Type parameter allows peeking of different sizes. For example,
to peek a byte, you would use Peek.b; to peek a word, you would use Peek.w; and to
peek a long, you would use Peek.l

It is also possible to peek a string using Peek$. This will return a string of characters
read trom consecutive memory locations until a byte of 0 is found.
Peeks$ (Address,length)
Peeks$ will return a string of characters corresponding to bytes peeked from
consective memory locations starting at Address, and Length characters in length.

118

Call Address
Call make program flow to be transferred to the memory location specified by Address.

NOTE that Call is for advanced programmers only, as incorrect use of Call can lead
to severe problems - GURUS etc!

A 68000 JSR instruction is used to transfer program flow, so an RTS may be used to
transfer back to the Blitz program.

Bank (Bank#)
Returns the meniory location of the given memory Bank, replaces the older and
more stupidly named BankLoc command.

BankSize (Bank#)
BankSize returns the size of the memory hlock allocated for the specified Bank#.

lnitBank Bank#,size,memtype
InitBank allocates a hlock ot memory and assigns it to the Bank specified. The
memtype is the same as the Amiga operating system memory flags: 1 = public
2 = chip 65536 = clear memory

FreeBank Bank#
FreeBank de-allocates any memory block allocated tor the Bank specified.

LoadBank Bank#,FileName$[,MemType]
The LoadBank command has been modified, instead of having to initialise the bank
before loading a file, LoadBank will now initialise the bank to the size of the file if it
 is not already large enough or has not been initialised at all.

SaveBank Bank#,filename$
SaveBank will save the memory assigned to the Bank to the filename specified.

AllocMem (size,type)
Unlike calling Exec's AllocMem_ command directly Blitz will automatically free any
allocated memory when the program ends. Programmers are advised to use the
InitBank command. Flags that can be used with the memory type parameter are:
1=public ;fast if present 2=chipmem 65536=clear ;clears all memory allocated with 0's

FreeMem location,size
Used to tree any memory allocated with the AllocMem command.
R-9: PROGRAM STARTUP COMMANDS

This section covers all commands dealing with how an executable file goes about

119

starting up. This includes the ability to allow your programs to run from Workbench,
and to pick up parameters supplied through the CLI.

WBStartup
By executing WBStartup at some point in your program, your program will be given the
ability to run from Workbench. A program run from Workbench which does NOT include
the WBStartup command will promptly crash if an attempt is made to run it from
Workbench.

NumPars
The NumPars function allows an executable file to determine how many parameters
were passed to it by either Workbench or the CLI. Parameters passed from the
CLI are typed following the program name and separated by spaces.

For example. let's say you have created an executable program called myprog,
and run it trom the CLI in the following way:

myprog filer Olle2

In this case, NumPars would return the value '2' - 'file1' and 'file2' beng the 2
parameters.

Programs run from Workbench are only capable of picking up 1 parameter through
the use of either the parameter file's 'Default Tool' entry in it's '.info' file, or by use
of multiple selection through the 'Shift' key.

If no parameters are supplied to an executable file, NumPars will return 0.
During program development, the 'CLI Arguement' menu item in the 'COMPILER'
menu allows you to test out CLI parameters.

Par$ (Parameter)
Par$ return a striny equivalent to a parameter passed to an executable file through
either the CLI or Workbench. Refer to NumPars for more information.

CloseEd
CloseEd statetnent will cause the Blitz editor screen to 'close down' when programs
are executed from within Blitz. This may be useful when writing programs which use a
large amount of chip memory, as the editor screen itself occupies 40K of ChipMem.
CloseEd will have no effect on executable files run outside of the Blitz environment.

NoCli
NoCli will prevent the nonnal 'Default Cli' from opening when programs are executed
from within Blitz. NoCli has no effect on executable files run outside Blitz environment.

120

FromCLI
Returns TRUE (-1) if your program was run from CLI, or FALSE (0) if run from WB.

ParPath$ (parameter,type)
ParPath$ returns the path that the parameter resides in, 'type' specifies how you want
the path returned:

0 You want only the directory of the parameter returned.
1 You want the directory along with the parameter name returned.

If you passed the parameter "FRED" to your program from WB, and FRED resides
in directory "work:mystuff/myprograms" then ParPath$(0,0) will return "work:mystuff/
myprograms" , but ParPath$(0,1) will return "work:mystuff/myprograms/FRED".

The way WB handles argument passing of directories is different to that of files. When
a directory is passed as an argument, ArgsLib gets an empty string for the name, and
the directory string holds the path to the passed directory AND the directory name
itself.

R-10: SLICE COMMANDS

Slices are Blitz objects which are the heart of Blitz mode's powerful graphics system.
Through the use of slices, many weird and wonderful graphical effects can be
achieved, effects not normally possible in Amiga mode. This includes such things
as dual playfield displays, smooth scrolling, double buffering and more.

A slice may be thought of as a 'description' of the appearance of a rectangular area of
the Amiga's display. This description includes display mode, colour palette, sprite and
bitplane information. More than one slice may be set up at a time, allowing different
areas of the display to take on different properties.

Slices must not overlap in any way (at least two Scan lines is required between each
slice). They may not be positioned side by side.

Slice Slice#, Y, Flags Slice#, Y, Width, Height, Flags, BitPlanes, Sprites,
Colours, w1, w2
The Slice command is used to create a Blitz slice object. Slices are primarily of
use in Blitz mode, allowing you to create highly customized displays.

In both forms of the Slice command, the Y parameter specifies the vertical pixel
position of the top of the slice. A Y value of 44 will position slices at about the top
of the display.

In the first torm of the Slice command, Flags refers to the number of bitplanes in any

121

bitmaps (the bitmap's depth) to be shown in the slice. This form of the Slice command
will normally create a lo-res slice, however this may be changed to a hi-res slice by
adding eight to the Flags parameter. For instance, a Flags value of tour will set up a
lo-res, 4 bitplane (16 colour) slice, whereas a Flags value of ten will set up a hi- res, 2
bitplane (4 colour) slice. The width of a slice set up in this way will be 320 pixels for
a lo-res slice, or 640 pixels for a hi-res slice. The height of a slice set up using this
syntax will be 200 pixels on an NTSC Amiga, or 256 pixels on a PAL Amiga.

The second form of the Slice command is far more versatile, albeit a little more
complex. Width and Height allow you to use specific values for the slice's
dimensions. These parameters are specified in pixel amounts.

BitPlanes refers to the depth of any bitmaps you will be showing in this slice.

Sprites refers to how many sprite channels should be available in this slice. Each slice
may have up to eight sprite channels, allowing sprites to be 'multiplexed'. This is one
way to overcome the Amiga's 'eight sprite limit'. It is recommended that the top-most
slice be created with all 8 sprite channels, as this will prevent sprite flicker caused by
unused sprites.

Colours refers to how many colour palette entries should be available for this slice,
and should not be greater than 32.

Width1 and Width2 specify the width, in pixels, of any bitmaps to be shown in this
slice. If a slice is set up to be a dual-playfield slice, Width1 refers to the width of the
'foreground' bitmap, and Width2 refers to the width of the 'background' bitmap. If a
slice is NOT set up to be a dual-playfield slice, both Width1 and Width2 should be set
to the same value. These parameters allow you to show bitmaps which are wider than
the slice, introducing the ability to smooth scroll through large bitmaps.

The Flags parameter has been lett to last because it is the most complex. Flags allows
you control over many aspects of the slices appearance, and just what ettect the slice
has. Here are some example settings for Flags:

Flags Effect Max BitPlanes
$ftf8 A Standard lo-res slice 6
$fft9 A Standard hi-res slice 4
$fita A Lo-res, dual-playfield slice 6
$tfib A Hi-res, dual-playfiled slice 4
$fffc A HAM slice 6

WARNING - the next bit is definitely for the more advanced users out there!
Knowledge of the following is NOT necessary to make good use of slices.

Flags is actually a collection of individual bit-flags. The bit-flags control how the slices

122

'copper list' is created. Here is a list of the bitsnumbers and their effect:

Bit# Effect
15 Create copper MOVE BPLCON0
14 Create copper MOVE BPLCON1
13 Create copper MOVE BPLCON2
12 Create copper MOVE DIWSTRT and MOVE DIWSTOP
10 Create copper MOVE DDFSTRT and MOVE DDFSTOP
 8 Create copper MOVE BPL1MOD
 7 Create copper MOVE BPL2MOD
 4 Create a 2 line 'blank' above top of slice
 3 Allow for smooth horizontal scrolling
 2 HAM slice
 1 Dual-playtield slice
 0 Hi-res slice - default is lo-res

Clever selection of these bits allows you to create 'minimal' slices which may only
affect specific system registers.

The BitPlanes parameter may also be modified to specify 'odd only' or 'even only'
bitplanes. This is of use when using dual playfield displays, as it allowing you to
create a mid display slice which may show a different foreground or background
bitmap leaving the other intact. To specify creation of foreground bitplanes only,
simply set bit 15 of the BitPlanes parameter. To specify creation of background
bitplanes only, set bit 14 of the BitPlanes parameter

Use Slice Slice#
Use Slice is used to set the specified slice object as being the currently used slice.
This is required tor commands such as Show, ShowF, ShowB and Blitz mode RGB.

FreeSlices
FreeSlices is used to free all slices currently in use. As there is no capability to
Free individual slices, this is the only means by which slices may be deleted.

Show Bitmap#[,X, Y]
Show is used to display a bitmap in the currently used slice. This slice should not be
a dual-playfield type slice. Optional X and Y parameters may be used to position the
bitmap at a point other than it's top-left. This is normally only of use in cases where
a bitmap larger than the slice width and/or height has been set up.
ShowF BitMap#[,X, Y[,ShowB X]]
ShowF is used to display a bitmap in the foreground of the currently used slice. The
slice must have been created with the appropriate Flags parameter in order to
support dual-playfield display.

123

Optional X and Y parameters may be used to show the bitmap at a point other than it's
top-left. Omitting the X and Y parameters is identical to supplying X and Y values of 0.

The optional ShowB x parameter is only of use in special situations where a dual-
playfield slice has been created to display ONLY a foreground bitmap. In this case, the
X offset of the background bitmap should be specified in the ShowB x parameter.

ShowB BitMap#[,X,Y[,ShowFX]]
ShowB is used to display a bitmap in the background of the currently used slice. The
slice must have been created with the appropriate Flags parameter in order to support
dual-playfield display.

Optional X and Y parameters may be used to show the bitmap at a point other than it's
top-lett. Omitting the X and Y parameters is identical to supplying X and Y values of 0.

The optional ShowF x parameter is only of use in special situations where a dual-
playfield slice has been created to display ONLY a background bitmap. In this case,
the X offset of the foreground bitmap should be specified in the ShowF x parameter.

ColSplit ColourRegister,Red,Green,Blue,Y
ColSplit allows you to change any of the palette colour registers at a position relative
to the top of the currently used slice. This allows you to 're-use' colour registers at
different positions down the screen to display different colours. Y specifies a vertical
offset from the top of the currently used slice.

CustomCop Copin$, Y
CustomCop allows advanced programmers to introduce their own copper instructions
at a specified position down the display. Copins$ refers to a string of characters
equivalent to a series of copper instructions. Y refers to a position down the display.

ShowBlitz
ShowBlitz redisplays the entire set up of slices. This may be necessary if you have
made a quick trip into Amiga mode, and wish to return to Blitz mode with previously
created slices intact.

CopLoc
CopLoc returns the memory address of the Blitz mode copper list. All Slices, ColSplits,
and CustomCops executed are merged into a single copper list, the address of which
may found using the CopLoc function.
CopLen
CopLen returns the length, in bytes, of the Blitz mode copper list. All Slices, ColSplits,
and CustomCops executed are merged into a single copper list, the length of which
may found using the CopLen function.

124

Display On I Off
Display is a blitz mode only command which allows you to 'turn on' or 'turn off' the
entire display. If the display is turned off, the display will appear as a solid block
of colour 0.

SetBPLCON0 Default
The SetBPLCON0 command has been added for advanced control of Slice display
modes. The BPLCON0 hardware register is on page A4-l of the reference manual
(appendix 4). The bits of interest are as follows:

bit#1 ERSY external sync (for genlock enabling) bit#2 LACE interlace mode
bit#3 LPEN light pen enable

R-11: DISPLAY LIBRARY COMMANDS

The new display library is an alternative to the slice library. Instead of extending the
slice library for AGA support a completely new display library has been developed.

Besides support for extended sprites, super hires scrolling and 8 bitplane displays a
more modular method of creating displays has been implemented with the use of
CopLists. CopLists need only be initialized once at the start of the program. Displays
can then be created using any combination of CopLists. Most importantly the
CreateDisplay command does not allocate any memory avoiding any memory
fragmenting problems. The new display library is for non-AGA displays also.

To create displays the InitCopList command is used to allocate memory for what were
up till now known as Slices. A display is then created by linking one or more of these
coplists together into a single display.

With many of the new AGA modes sprite DMA has been screwed up something severe.
Those wanting to use 8 bitplanes and 8 sprites in lores will be disapointed to hear that
their displays must be modified to some 256 pixels across.

The way the Amiga fetches data for each scanline is also a little different with the AGA
machines. The effect is that displays have to be created more to the right than usual so
the system has time to fetch sprites.

InitCopList CopList#,ypos,height,type,sprites,colors,customs
InitCopList is used to create a CopList for use with the CreateDisplay command.

The ypos and height parameters define the vertical section of the screen the display
will take up.

Sprites, Colors and Customs will allocate instructions for that many sprites (always=8!)
colors (yes, as many as 256!) and custom copper instructions (which need to be

125

allocated to take advantage of the custom commands listed at the end of this section).

A shortened version of the InitCopList command is available that simply requires
the CopList# and the Type. From the Type it fills in the missing parameters.

As with slices several lines must be left between coplists when displaying more
than one.

The following constants make up the type patameter, add the number of bitplanes to
the total to make up the type parameter:

Type Value

#smoothscroll $10
#dualplayfield $20
#extrahalibrite $40
#ham $80
#lores $000
#hires $100
#super $200
#loressprites $400
#hiressprites $800
#supersprites $c00
#fmode0 $0000
#fmode1 $1000
#fmode2 $2000
#fmode3 $3000
#agapalette $10000

For displays on non-AGA machines only #fmode0 and #loressprites are allowed More
documentation, examples and fixes will be published soon for creating displays

CreateDisplay CopList#[,CopList#..]
CreateDisplay is used to setup a new screen display with the new display library. Any
number of CopLists can be passed to CreateDisplay although at present they must be
in order of vertical position and not overlap CreateDisplay then links the Cooplists
together using internal pointers. bitmaps, colours and sprites attached to coplists are
not affected

DisplayBitMap CopLis t#,bmap[,x, y] [, bmap[,x, y]]
The DisplayBitMap command is similar in usage to the slice libraries' show commands
instead of different commands for front and back playfields and smooth scroll options
there is only the one DisplayBitMap command with various parameter options With AGA
machines, the x positioning of lores and hires coplists uses the fractional part of the x
parameter for super smooth scrolling The CopList must be initialised with the smooth

126

scrolling flag set if the x,y parameters are used, same goes to dualplayfield.

DisplaySprite CopList#,Sprite#,X,Y,Sprite Channel
DisplaySprite is similar to the slice libraries ShowSprite command with the added
advantage of super hires positioning and extra wide sprite handling. See also
SpriteMode and the usage discussionabove.

DisplayPalette CopList#,Palette# [, coloroffset]
DisplayPalette copies colour information from a Palette to the CopList specified.

DisplayControls CopList#, BPL CON2, BPLCON3, BPL CON4
DisplayControls allows access to the more remote options available in the Amiga's
display system. The following are the most important bits from these registers (still
unpublished by Commodore!*()@GYU&^)

Default values are at top of the table, parameters are exclusive or'd with these values.

To set all the sprite color offsets to 1 so that sprite colours are fetched from color
registers 240..255 instead of 16..31 we would use the parameters:
DisplayControls 0,0,0,$ee

Bit# BPLCON2 BPLCON3 BPLCON4
 ($224) ($c00) ($11)

15 * BANK2 *activecolorbankBPLAM7 ;xorithbitplane
14 ZDBPSEL2 BANK1 * BPLAM6 ;DMA altering
13 ZDBPSEL1 BANK0 * BPLAM5 ;effectivecolour
12 ZDBPSEL0 PF20F2 coloffset pfield 2 BPLAM4 ;look up
11 ZDBPEN PF20F1 BPLAM3
10 ZDCTEN PF20F0 BPLAM2
09 KILLEHB * LOCT *palette hi/lo nibble BPLAM1
08 RDRAM=0 * BPLAM0
07 SOGEN SPRESI *sprite res ESPRM7 high order color
06 PF2PRI H SPRES0 * ESPRM6 offset tor even
05 PF2P2 BRDRBLANK border ESPRM5 sprites
04 PF2P1 BRDNTRAN zd=border ESPRM4
03 PFIP0 OSPRM7 hiorder color
02 PFIP2 ZDCLCKEN zd= 14mhz OSPRM6 offset for odd
01 PFIPI BRDSPRT spritesinborders! OSPRM5 sprites
00 PFIPO EXTBLKEN blank output? OSPRM4
! = Don't touch
H - See standard hardware reference manual
* - controlled by display library
ZD - any reference to ZD is only a guess (just sold my genlock)

DisplayAdjust CopList#,fetchwid,dUfstrt,dUfstop,diwstrt,diwstop

127

Temporary control of display registers until I get the width adjust parameter working
with InitCopList. Currently only standard width displays are available but you can
modify the width manually (just stick a screwdriver in the back of your 1084) or with
some knowledge of Commodores AGA circuitry. No to be quite serious I really do not
have a clue how they cludeged up the Amiga chip set. When ECS was introduced
suddenly all display fetching moved to the right. Now they seem to have done the
same to sprites so it is near impossible to have them all going without limiting yourself
to a seriously thin display.

If you hack around with the system copperlists you'll find they actually change fetch
modes as you scroll a viewport across the display and commodore say you should not
use sprites anyway so as to be compatible with their new hardware which is rumoured
to run WindowsNT, yipeee. By then we will be hopefully shipping the Jaguar lib for Blitz.

CustomColors CopList#, CCOffset, YPos,Palette,startcol,numcols
Using the custom copper space in a display, CustomColors will alter the displays
palette at the given YPos. The number of customcops required is either 2+numcols for
ecs displays and 2+n+n+n/16 for age displays. In age, numcols must be a multiple of 32.

Note: Large AGA palette changes may take several lines of the display to be complete.

CustomString CopList#, CCOffset, YPos, Copper$
CustomString allows the user to insert their own copper commands (contained in a
string) into the display's copper list at a given vertical position. The amount of space
required is equal to the number of copper instructions in the Copper$ (length of string
divide by 4) plus 2 which of course have to be allocated with InitCopList before
CustomString is used.

CustomSprites Coplist#, CCOffset, YPos, NumSprites
CustomSprites inserts a copper list that reinitialises the sprites hardware at a certain
vertical position in the display. These lower sprites are assigned sprite numbers of
8..15. CustomCops required = 4 x numsprites + 2

DisplayDblScan mode
DisplayDblScan is used to divide the vertical resolution of the display by 2,4,8 or 16
using Modes 1,2,3 and 4. This is most useful for fast bitmap based zooms. A Mode of 0
will return the display to 100% magnification.
As with the DisplayRainbow, DisplayRGB, DisplayUser and DisplayScroll commands
DisplayDblScan uses the new line by line copper control of the display library. To
initialise this mode a negative parameter is used in the CustomCops parameter of the
InitCopList command. DisplayDblScan requires 2 copper instructions per line (make
CustomCops=-2).

DisplayRainbow CopList#, Register,Palette[,copoffset]
DisplayRainbow is used to alter a certain colour register vertically down a display. It

128

simple maps each colour in a palette to the corresponding vertical position of display.
ECS displays require one copper instruction per line while AGA displays require 4.

DisplayRGB CopList#,Pegister,line,r,g,b[,copoffset]
DisplayRGB is a single line version of DisplayRainbow allowing the programmer to alter
any register of any particular line. As with DisplayRainbow ECS displays require 1
copper instruction while AGA requires 4.

DisplayUser CopList#, Line,String[,Offset]
DisplayUser allows the programmer to use their own Copper$ at any line of the display.
Of course copper instructions have to be allocated with the number of copper
instructions in the InitCoplist multiplied by -1.

DisplayScroll CopList#, &xpos. q(n), &xpos.q(n)[, Offset]
DisplayScroll allows the program to dynamically display any part of a bitmap on any
line of the display. DisplayScroll should always follow the DisplayBitMap command.

The parameters are two arrays holding a list of xoffsets that represent the difference
in horizontal position from the line above. AGA machines are able to use the fractional
part of each entry for super hiresolution positioning of the bitmap. Three instructions
per line are required for the DisplayScroll command.

R-12: BLITZMODE I/O COMMANDS

This sections refers to various Input/Output commands available in Blitz mode.

It should be noted that although the Joyx, Joyy, Joyr, and Joyb functions do not
appear here, they are still available in Blitz mode (yes your honour).

BlikKeys On l Off
BlitzKeys is used to turn on or off Blitz mode keyboard reading. If Blitz mode keyboard
reading is enabled, the Inkey$ function may be used to gain information about
keystrokes in Blitz mode.

BlikQualifier
BlitzQualifier returns any qualifier keys that were held down in combination with the
last inkey$ during BlitzMode input.
BlikRepeat Delay,Speed
BlitzRepeat allows you to determine key repeat characteristics in Blitz mode. Delay
specifies the amount of time, in fiftieths of a second, before a key will start repeating.
Speed specifies the amount of time, again in fiftieths of a second, between repeats of
a key once it has started repeating.

BlitzRepeat is only effective when the Blitz mode keyboard reading is enabled. This is

129

done using the BlitzKeys command.

RawStatus (Rawkey)
The RawStatus function can be used to determine if an individual key is being held
down or not. Rawkey is the rawcode of the key to check for. If the specified key is
being held down, a value of -1 will be returned. If the specified key is not being held
down, a value of zero will be returned.

RawStatus is only available if Blitz mode keyboard reading has been enabled.
This is done using the BlitzKeys command.

Mouse On I Off
Mouse command turns on or off Blitz mode's ability to read the mouse. Once a Mouse
On has been executed, programs can read the mouse's position or speed in Blitz mode.

Pointer Sprite#,Sprite Channel
The Pointer command allows you to attach a sprite object to the mouse's position in
the currently used slice in Blitz mode.

To properly attach a sprite to mouse position, several commands must be executed in
correct sequence. 1st a sprite must be created using the LoadShape and GetaSprite
sequence of commands. Then, a slice must be created to display the sprite in.

A Mouse On must then be executed to enable mouse reading.

MouseArea Minx,Miny,Maxx,Maxy
MouseArea allows you to limit Blitz mode mouse movement to a rectangular section of
the display. Minx and Miny define the top left corner of the area, Maxx and Maxy define
the lower right corner.

MouseArea defaults to an area from 0,0 to 320,200.

MouseX
If Blitz mode mouse reading has been enabled using a Mouse On command, the MouseX
function may be used to find the current horizontal location of the mouse. If mouse
reading is enabled, the mouse position will be updated every fiftieth of a second,
regardless of whether or not a mouse pointer sprite is attached.

MouseY
If Blitz mode mouse reading has been enabled using Mouse On command, the MouseY
function may be used to find the current vertical location of the mouse. If mouse
reading is enabled, the mouse position will be updated every fiftieth of a second,
regardless of whether or not a mouse pointer sprite is attached.

130

MouseXSpeed
If Blitz mode mouse reading has been enabled using a Mouse On command, the
MouseXSpeed function may be used to find the current horizontal speed of mouse
movement, regardless of whether or not a sprite is attached to the mouse.

If MouseXSpeed returns a negative value, then the mouse has been moved to
the left. If a positive value is returned, the mouse has been moved to the right.

MouseXSpeed only has relevance after every vertical blank. Therefore, MouseXSpeed
should only be used after a VWait has been executed or during a vertical blank interupt.

MouseYSpeed
If Blitz mode mouse reading has been enabled using a Mouse On command, the
MouseYSpeed function may be used to find the current vertical speed of mouse
movement, regardless of whether or not a sprite is attached to the mouse.

If MouseYSpeed returns a negative value, then the mouse has been moved upwards.
If a positive value is returned, the mouse has been moved downwards.

MouseYSpeed only has relevance after every vertical blank. Therefore, MouseYSpeed
should only be used after a VWait has been executed or during a vertical blank interupt.

LoadBlitzFont BlitzFont#,Fontname.font$
LoadBlitzFont creates a blitzfont object. Blitzfonts are used in the rendering of text to
bitmaps. Normally, the standard rom resident topaz font is used to render text to
bitmaps. However, you may use LocalBlitzFont to select a font of your choice for bitmap
output.

The specified Fontname.font$ parameter specifies the name of the font to load,
which MUST be in your FONTS: directory.
LoadBlitzFont may only be used to load eight by eight non-proportional fonts.

Use BlitzFont BlitzFont#
If you have loaded two or more blitzfont objects using LoadBlitzFont,
UseBlitzFont may be used to select one of these fonts for future bitmap output.

Free BlitzFont BlitzFont#
Free BlitzFont 'unloads' a previously loaded blitzfont object. This frees up any memory
occupied by the font.

BitMapOutput BitMap#
BitMapOutput may be used to redirect Print statements to be rendered onto a
bitmap. The font used for rendering may be altered using LoadBlitzFont.

131

Fonts used for bitmap output must be eight by eight non-proportional fonts.

BitMapOutput is mainly of use in Blitz mode as other forms of character output become
unavailable in Blitz mode.

Colour Foreground Colour[,Background Colour]
Colour allows you to alter the colours use to render text to bitmaps. Foreground
colour allows you to specify the colour text is rendered in, and the optional
Background colour allows you to specify the colour of the text background.

The palette used to access these colours will depend upon whether you are in Blitz
mode or in Amiga mode. In Blitz mode, colours will come from the palette of the
currently used slice. In Amiga mode, colours will come from the palette of the
screen the bitmap is attached to.

Locate X, Y
If you are using BitMapOutput to render text, Locate allows you to specify the cursor
position at which characters are rendered.

X specifies a character position across the bitmap, and is always rounded down
to a multiple of an eighth.

Y specifies a character position down the bitmap, and may be a fractional value. For
example, a Y of 1.5 will set a cusor position one and a half characters down from
the top of the bitmap.

CursX
When using BitMapOutput to render text to a bitmap, CursX may be used to find the
horizontal character position at which the next character Printed will appear.
CursX will reflect the cursor position of the bitmap specified in the most recently
executed BitMapOutput statement.

CursY
When using BitMapOutput to render text to a bitmap, CursY may be used to find the
vertical character position at which the next character Printed will appear. CursY will
reflect the cursor position of the bitmap specified in the most recently executed
BitMapOutput statement.
BitMapInput
BitMaplnput is a special command designed to allow you to use Edit$ and Edit in Blitz
mode. To work properly, a BlitzKeys On must have been executed before BitMapInput.
BitMapOutput must be executed before any Edit$ or Edit commands are encountered.

R-13: BITMAP COMMANDS

132

Blitz BitMap objects are used primarily for the purpose of rendering graphics. Most
commands in Blitz for generating graphics (excluding the Window and Sprite
commands) depend upon a currently used BitMap.

BitMap objects may be created in one of two ways. A BitMap may be created by
using the BitMap command, or a BitMap may be 'borrowed' from a Screen using
the ScreensBitMap command.

BitMaps have three main properties. They have a width, a height and a depth. If a
BitMap is created using the ScreensBitMap command, these properties are taken from
the dimensions of the Screen. If a BitMap is created using the BitMap command, these
properties must be specified.

BitMap BitMap#, Width,Height,Depth
BitMap creates and initializes a bitmap object. Once created, the specified bitmap
becomes the currently used bitmap. Width and Height specify the size of the bitmap.
Depth specifies how many colours may be drawn onto the bitmap, and may be in the
range one through six. The actual colours available on a bitmap can be calculated
using 2^depth. For example, a bitmap of depth three allows for 2^3 or eight colours.

Use BitMap BitMap#
Use BitMap defines the specified bitmap object as being the currently used BitMap.
This is necessary for commands, such as Blit, which require the presence of a
currently used BitMap.

Free BitMap BitMap#
Free BitMap erases all information connected to the specified bitmap. Any memory
occupied by the bitmap is also deallocated. Once free'd, a bitmap may no longer be
used.

CopyBitMap BitMap#,BitMap#
CopyBitMap will make an exact copy of a bitmap object into another bitmap object.
The first BitMap# parameter specifies the source bitmap for the copy, the second
BitMap# the destination.
Any graphics rendered onto the source bitmap will also be copied.

ScreensBitMap Screen#,BitMap#
Blitz allows you the option of attaching a bitmap object to any Intuition Screens you
open. If you open a Screen without attaching a bitmap, a bitmap will be created
anyway. You may then find this bitmap using the ScreensBitMap command. Once
ScreensBitMap is executed, the specified bitmap becomes the currently used bitmap.

LoadBitMap BitMap#,Filename$[,Palette#]

133

LoadBitMap allows you to load an ILBM IFF graphic into a previously initialized bitmap
object. You may optionally load in the graphics's colour palette into a palette object
specified by Palette#. An error will be generated if the specified Filename$ is not in the
correct IFF format.

SaveBitmap BitMap#, Filename$[,Palette#]
SaveBitMap allows you to save a bitmap to disk in ILBM IFF format. An optional palette
may also be saved with the IFF.

BitPlanesBitMap SrcBitMap, DestBitMap, PlanePick
BitPlanesBitMap creates a 'dummy' bitmap from the SrcBitMap with only the bitplanes
specified by the PlanePick mask. This is useful for shadow effects etc. where blitting
speed can be speed up because of the fewer bitplanes involved.

ShapesBitMap Shape#,BitMap#
ShapesBitMap creates a dummy BitMap so drawing commands can be used directly
on a shapes image data.

CludgeBitMap BitMap#, Width,Height,Depth,Memory
CludgeBitMap will create a bitmap object with the proportions for that specified using
the memory location given. Of course, the memory location specified must be in
chipmem and it is upto the user to ensure that sufficient memory has been allocated.
This command is most useful for games where memory fragmentation can be a big
problem, by allocating one block of memory on program initialisation for all bitmaps
CludgeBitMap can be used so that creating and freeing of BitMaps is not necessary.

BitMapWindow srobitmap#,destbitmap#,x,y,w,h
BitMapWindow creates a dummy bitmap inside another bitmap. Both x and w
parameters are rounded to the nearest 16 pixel boundary. Any rendering, printing
and blitting to the new bitmap will be clipped inside the area used.

BitMapOrigin BitMapOrigin BitMap#,x,y
BitMapOrigin allows the programmer to relocate the origin (0,0) of the bitmap used
by the drawing commands line, poly, box and circle.

DecodelLBM DecodelLBM BitMap#,MemoryLocation
A very fast method of unpacking standard iff ilbm data to a bitmap. Not only does
this command allow a faster method of loading standard IFF files but allows the
programmer to "incbin" iff pictures in their programs.See the discussion above for
using DecodeILBM on both files and included memory.

R-14: 2D DRAWING COMMANDS

This section covers all commands related to rendering arbitrary graphics to bitmaps

134

All commands perform clipping - that is, they all allow you to draw 'outside' the edge.s
of bitmaps without grievous bodily harm being done to the Amiga's memory

Cls [Colour]
Cls allows you to fill the currently used bitmap with the colour specified
by the Colour parameter. If Colour is omitted, the currently used bitmap
will be filled with colour 0. A Coltiur parameter of - 1 will cause the
entire bitmap to be 'inverted'.

Plot X,Y,Colour
Plot is used to alter the colour of an individual pixel on the currently used bitmap. X
and Y specify the location of the pixel to be altered, and Colour specifies the colour to
change the pixel to. A Colour parameter of -1 will cause the pixel at the specified pixel
position to be 'inverted'.

Point (X,Y)
The Point function will return the colour of a particular pixel in the currently used
hitmap. The pixel to be examined is specified by the X and Y parameters If X and Y
specify a point outside the edges of the bitmap, a value of -1 will be returned.

Line [X1,Y1,]X2,Y2,Colour
The Line command draws a line connecting two pixels onto the currently used bitmap.
The X and Y parameters specify the pixels to be joined, and Colour specifies the colour
to draw the line in If X1 and Y1 are omitted, the end points (X2,Y2) of the last line
drawn will be used. A Colour parameter of -1 will cause an 'inverted' line to be drawn

Box X1,Y1,X2,Y2, Colour
The Box command draws a rectangular outline onto the currently used bitmap.X1, Y1,
X2 and Y2 specify two corners of the box to be drawn. Colour refers to the colour to
draw the box in. A Colour parameter of -1 will cause an 'inverted' box to be drawn.

Boxf X1,Y1,X2,Y2, Colour
Boxf draws a solid rectangular shape on the currently used bitmap. X1,Y1,X2 and Y2
refer to two corners of the box. Colour specifies the colour to draw the box in. A Colour
parameter of -1 will cause the rectangular area to be 'inverted'.

Circle X,Y,Radius[, YRadius],Colour
Circle will draw an open circle onto the currently used bitmap. X and Y specify the mid
point of the circle. The Radius parameter specifies the radius of the circle. If a Y
Radius parameter is supplied, then an ellipse may be drawn. A Colour parameter of -1
will cause an 'inverted' circle to be drawn.

Circlef X,Y,Radius[, YRadius],Colour

135

Circlef will draw a filled circle onto the currently used bitmap. X and Y specify the mid
point of the circle - Colour, the colour in which to draw the circle. The Radius
parameter specifies the radius of the circle. If a Y Radius parameter is supplied, then
an ellipse may be drawn.
A Colour parameter of - 1 will cause an 'inverted' circle to be drawn.

Scroll X1,Y1,Width,Height,X2,Y2[,Source BitMap]
Scroll allows rectangular areas within a bitmap to be moved around. X1, Y1, Width and
Height specify the position and size of the rectangle to be moved. X2 and Y2 specify
the position the rectangle is to be moved to.

An optional Source BitMap parameter allows you to move rectangular areas from one
bitmap to another.

FloodFill X,Y,Colour [,Border Colour]
FloodFill will 'colour in' a region of the screen starting at the coordinates X,Y. The first
mode will fill all the region that is currently the colour at the coordinates X,Y with the
colour specified by Colour. The second mode will fill a region starting at X,Y and
surrounded by the BorderColour with Colour.

FreeFill
FreeFill will deallocate the memory that Blitz uses to execute the commands Circlef,
FloodFill, ReMap and Boxf.

Blitz uses a single monochrome bitmap the size of the bitmap being drawn to do it's
filled routines, by using the FreeFill command this BitMap can be 'freed' up if no more
filled commands are to be executed.

ReMap colour#0,colour#1[,Bitmap]
ReMap is used to change all the pixels on a BitMap in one colour to another colour. The
optional BitMap parameter will copy all the pixels in Colour#0
to their new colour on the new bitmap.

Poly numpoints, *coords. w,color

Poly is a bitmap based commands such as Box and Line. It draws a polygon using
coordinates from an array or newtype of words.
Polyf numpoints, *coords. w,color[,color2]
Same as Poly except Polyf draws filled polygons and has an optional parameter color2,
if used this colour will be used if the coordinates are listed in anti-clockwise order,
useful for 3D type applications. If color2=-1 then the polygon is not drawn if the
verticies are listed in anti- clockwise order.

R-15: ANIMATION SUPPORT COMMANDS

136

The following 4 commands allow the display of standard IFF animations in Blitz. The
animation must be compatible with the DPaint 3 format, this method uses long delta
(type 2) compression and does not include any palette changes.

Anims in nature use a double buffered display, with the addition of the ShowBitMap
command to Blitz we can now display (play) Anims in both Blitz and Amiga modes. An
Anim consists of an initial frame which needs to be displayed (rendered) using the
InitAnim command, subsequent frames are then played by using the NextFrame
command. The Frames() function returns the number of frames of an Anim.

We have also extended the LoadShape command to support Anim brushes.

LoadAnim Anim#,FileName$[Palette#]
The LoadAnim command will create an Anim object and load a DPaint compatible
animation. The ILBMInfo command can be used to find the correct screensize and
resolution for the anim file. The optional Palette# parameter can be used to load a
palette with the anims correct colours.

InitAnim Anim#[,Bitmap#]
InitAnim renders the first two frames of the Anim onto the current BitMap and the
BitMap specified by the second parameter. The second BitMap# parameter is optional,
this is to support Anims that are not in a double-buffered format (each frame is a delta
of the last frame not from two frames ago). However, the two parameter double
buffered form of InitAnim should always be used. (hmmm don't ask me O.K.!)

NextFrame Anim#
NextFrame renders the nextframe of an Anim to the current BitMap. If the last frame of
an Anim has been rendered NextFrame will loop back to the start of the Animation.

Frames (Anim#)
The Frames() function returns the number of frames in the specified Anim.

R-16: SHAPE HANDLING COMMANDS

Shape objects are used for the purpose of storing graphic images. These images may
be used in a variety of ways. For example, a shape may be used as the graphics for a
gadget, or as the graphics for a menu item or perhaps an alien being bent on your
destruction.

See the Blitting section for the many commands that are available for the purpose of
drawing shapes onto bitmaps. These commands use the Amiga's blister chip to achieve
this, and are therefore very fast.

Note that Blitz supports two different file formats for storage of shapes. Standard

137

 IFF brush files (such as created with DPaint) as well as animbrushes use the
LoadShape/SaveShape commands and the faster Blitz format uses the LoadShapes
and SaveShapes format.

LoadShape Shape#,Filename$[,Palette#]
LoadShape allows you to load an ILBM IFF file into a shape object. The optional
Palette# parameter lets you also load the colour information contained in the file into
a palette object.

The LoadShape command has now been extended to support anim brushes, if the
file is an anim brush the shapes are loaded into consecutive shapes starting with
the Shape# provided.

SaveShape Shape#,Filename$,Palette#
SaveShape will create an ILBM IFF file based on the specified shape object.
If you want the file to contain colour information, you should also specify
a palette object using the Palette# parameter.

LoadShapes Shape#[, Shape#],Filename$
LoadShapes lets you load a 'range' of shapes from disk into a series of shape objects.
The file specified by Filename$ should have been created using SaveShapes command.

The first Shape# parameter specifies the number of the first shape object to be loaded.
Further shapes will be loaded into increasingly higher shape objects.

If a second Shape# parameter is supplied, then only shapes up to and including the
second Shape# value will be loaded. If there are not enough shapes in the file to fill
this range, any excess shapes will remain untouched.

SaveShapes Shape#,Shape#,Filename$
SaveShapes allows you to create a file containing a range of shape objects.
This file may be later loaded using the LoadShapes command.

The range of shapes to be saved is specified by Shape#,Shape#, where the first
Shape# refers to the lowest shape to be saved and the second Shape# the highest.

GetaShape Shape#,X, Y, Width,Height
GetaShape lets you transfer a rectangular area of the currently used bitmap into the
specified shape object. X, Y, Width and Height specify the area of the bitmap to be
picked up and used as a shape.

CopyShape Shape#,Shape#
CopyShape will produce an exact copy of one shape object in another shape object.

138

The 1st Shape# specifies the source shape for the copy, the 2nd specifies the
destination shape.

CopyShape is often used when you require two copies of a shape in order to manipulate
(using, for example, XFlip) one of them.

AutoCookie On l Off
When shapes objects are used by any of the blitting routines (for example, Blit), they
usually require the presence of what is known as a'cookiecut'. These cookiecuts are
used for internal purposes by the various blitting commands, and in no way affect the
appearance or properties of a shape. They consume some of your valuable ChipMem.

When a shape is created (for example, by using LoadShape or GetaShape), a cookiecut
is automatically made for it. However, this feature may be turned off by executing an
AutoCookie Off.

This is a good idea if you are not going to be using shapes for blitting - for example,
shapes used for gadgets or menus.

MakeCookie Shape#
MakeCookie allows you to create a'cookiecut' for an individual shape. Cookiecuts are
necessary for shapes which are to be used by the various blitting commands (for
example, QBlit), and are normally made automatically whenever a shape is created (for
example, using LoadShape). However, use of the AutoCookie command may mean you
end up with a shape which has no cookiecut, but which youi wish to blit at some stage.
You can then use MakeCookie to make a cookiecut for this shape.

ShapeWidth (Shape#)
ShapeWidth function returns the width, in pixels, of a previously created shape object.

ShapeHeight (Shape#)
ShapeHeight function returns the height, in pixels,of a previously created shape object.

Handle Shape#,X,Y
All shapes have an associated 'handle'. A shape's handle refers to an offset from the
upper left of the shape to be used when calculating a shapes position when it gets
blitted to a bitmap. This is also often referred to as a 'hot spot'.

The X parameter specifies the 'acrosswards' offset for a handle, the Y parameter
specifies a 'downwards' offset.

Let's have a look at an example of how a handle works. Assume you have set a shapes
X handle to 5, and it's Y handle to 10. Now let's say we blit the shape onto a bitmap at
pixel position 160,100. The handle will cause the upper left corner of the shape to end

139

up at 155,90, while the point within the shape at 5,10 will end up at 160,100.

When a shape is created, it's handle is automatically set to 0,0 - it's upper left corner.

MidHandle Shape#
MidHandle will cause the handle of the specified shape to be set to it's centre. For
example, these two commands achieve exactly the same result:

MidHandle 0 Handle 0,ShapeWidth(0)/2,ShapeHeight(0)/2

For more information on handles, please refer to the Handle command.

XFlip Shape#
The XFlip command is one of Blitz's powerful shape manipulation commands. XFlip will
horizontally 'mirror' a shape object, causing the object to be 'turned back to front'.

YFlip Shape#
The YFlip command may be used to vertically 'mirror' a shape object. The resultant
shape will appear to have been 'turned upside down'.

Scale Shape#,X Ratio,Y Ratio[,Palette#]
Scale is a very powerful command which may be used to 'stretch' or'shrink' shape
objects. The Ratio parameters specify how much stretching or shrinking to perform.
A Ratio greater than one will cause the shape to be stretched (enlarged), while a Ratio
of less than one will cause the shape to be shrunk (reduced). A Ratio of exactly one
will cause no change in the shape's relevant dimension.

As there are separate Ratio parameters for both x and y, a shape may be stretched
along one axis and shrunk along the other!

The optional Palette# parameter allows you to specify a palette object for use in the
scaling operation. If a Palette# is supplied, the scale command will use a 'brightest
pixel' method of shrinking. This means a shape may be shrunk to a small size without
detail being lost.

Rotate Shape#,Angle Ratio
The Rotate command allows you to rotate a shape object. Angle Ratio specifies how
much clockwise rotation to apply, and should be in the range zero to one. For instance,
an Angle Ratio of .5 will cause a shape to be rotated 180 degrees, while an Angle Ratio
of .25 will cause a shape to be rotated 90 degrees clockwise.

DecodeShapes Shape#[,Shape#],MemoryLocation

140

DecodeShapes, similar to DecodeMedModule ensures the data is in chip and then
configures the Shape object(s) to point to the data.

InitShape Shape#, Width,Height,Depth
InitShape has been added to simple create blank shape objects. Programmers who
make a habit of using ShapesBitMap to render graphics to a shape object will
appreciate this one for sure.

R-17: BLITTING COMMANDS

The process of putting a shape onto a bitmap using the blister is often referred to as
'blitting' a shape. The speed at which a shape is blitted is important when you are
writing animation routines, as the smoothness of any animation will be directly
 affected by how long it takes to draw the shapes involved in the animation.

The two main factors which affect the speed at which a shape is blitted are it's size
and the technique used to actually blit the shape.

This section will cover all commands which allow you to draw shapes onto bitmaps
using the Amiga's 'blister' chip.

Blit Shape#,X, Y[,Excessonoff]
Blit is the simplest of all the blitting commands. Blit will simply draw a shape object
onto the currently used bitmap at the pixel position specified by X,Y. The shape's
handle, if any, will be taken into account when positioning the blit.

The optional Excessonoff parameter only comes into use if you are blitting a shape
which has less bitplanes (colours) than the bitmap to which it is being blitted. In this
case, Excessonoff allows you to specify an on/off value for the excess bitplanes - ie,
the bitplanes beyond those altered by the shape. Bit zero of Excessonoff will specify
an on/off value for the first excess bitplane, bit one an on/off value for the second
excess bitplane and so on.

The manner in which the shape is drawn onto the bitmap may be altered by use of the
BlitMode command.

BlitMode BLTCON0
BlitMode command allows you to specify just how the Blit command uses the blister
when drawing shapes to bitmaps. By default, BlitMode is set to a CookieMode' which
simply draws shapes 'as is'. However, this mode may be altered to produce other
useful ways of drawing. Here are just some of the possible BLTCON0 parameters:

CookieMode: Shapes are drawn 'as is'. EraseMode: An area the size and shape of the
shape willbe 'erased' on the destination bitmap.

141

InvMode: An area the size and shape of the shape willbe 'inversed' on the destination
bitmap. SolidMode: The shape will be drawn as a solid area of one colour.

Actually, these modes are all just special functions which return a useful value.
Advanced programmers may be interested to know that the BLTCON0 parameter is
used by the Blit command's blister routine to determine the blister MINITERM and
CHANNEL USE flags. Bits zero through seven specify the miniterm, and bits eight
through eleven specify which of the blister channels are used. For the curious out
there, all the blister routines in Blitz assume the following blister channel setup:

BlitterChannel Used For
A Pointer to shape's cookie cut
B Pointer to shape data
C Pointer to destination
D Pointer to destination

CookieMode
The CookieMode function returns a value which may be used by one of the
commands involved in blitting modes.

Using CookieMode as a blitting mode will cause a shape to be blitted cleanly, 'as is',
onto a bitmap.

EraseMode
The EraseMode function returns a value which may be used by one the
commands involved in blitting modes.

Using EraseMode as a blitting mode will cause a blitted shape to erase a
section of a bitmap corresponding to the outline of the shape.

InvMode
The InvMode function returns a value which may be used by one the commands
involved in blitting modes.

Using InvMode as a blitting mode will cause a shape to 'invert' a section
of a bitmap corresponding to the outline of the blitted shape.
SolidMode
The SolidMode function returns a value which may be used by one the
commands involved in blitting modes.

Using SolidMode as a blitting mode will cause a shape to overwrite a section
of a bitmap corresponding to the outline of the blitted shape.

142

Queue Queue#,Max Items
The Queue command creates a queue object for use with the QBlit and UnQueue
commands. What is a queue? Well, queues (in the Blitz sense) are used for the purpose
of multi-shape animation. Before going into what a queue is, let's have a quick look at
the basics of animation.

Say you want to get a group of objects flying around the screen. To achieve
this, you will have to construct a loop similar to the following:

Step 1: Start at the first object
Step 2: Erase the object from the display
Step 3: Move the object
Step 4: Draw the object at it's new location on the display
Step 5: If there are any more objects to move, go on to the next object and then

 go to Step 2, else...
Step 6: go to step 1

Step 2 is very important, as if it is left out, all the objects will leave trails behind them!
However, it is often very cumbersome to have to erase every object you wish to move.
This is where queues are of use. Using queues, you can 'remember' all the objects
drawn through a loop, then, at the end of the loop (or at the start of the next loop),
erase all the objects 'remembered' from the previous loop. Look at how this works:

Step 1: Erase all objects remembered in the queue
Step 2: Start at the first object
Step 3: Move the object
Step 4: Draw the object at it's new location, and add it to the end of the queue
Step 5: If there are any objects left to move, go on to the next object, then go to
step 3; else... Step 6: Go to step 1

This is achieved quite easily using Blitz's queue system. The UnQueue command
performs step 1, and the QBlit command performs step 4.

Queues purpose is to initialize the actual queue used to remember objects in. Queue
must be told the maximum number of items the queue is capable of remembering,
which is specified in the Max items parameter.

QBlit Queue#,Shape#,X, Y[,Excessonoff]
QBlit performs similarly to Blit, and is also used to draw a shape onto the currently
used bitmap. Where QBlit differs, however, is in that it also remembers (using a queue)
where the shape was drawn, and how big it was.
This allows a later UnQueue command to erase the drawn shape.

The optional Excessonoff parameter works identically to the Excessonoff parameter

143

used by the Blit command.

UnQueue Queue#[,BitMap#]
UnQueue is used to erase all 'remembered' items in a queue. Items are placed in a
queue by use of the QBlit command.
An optional BitMap# parameter may be supplied to cause items to be erased by way of
'replacement' from another bitmap, as opposed to the normal 'zeroing out' erasing.

FlushQueue Queue#
FlushQueue will force the specified queue object to be 'emptied', causing the next
UnQueue command to have no effect.

QBlitMode BLTCON0
QBlitMode allows you to control how the blister operates when QBlitting shapes to
bitmaps.

Buffer Buffer#,Memorylen
The Buffer command is used to create a buffer object. Buffers are similar to queues in
concept, but operate slightly differently. If you have not yet read the description of the
Queue command, it would be a good idea to do so before continuing here.

The buffer related commands are very similar to the queue related commands - Buffer,
BBlit, and UnBuffer, and are used in exactly the same way. Where buffers differ from
queues, however, is in their ability to preserve background graphics. Whereas an
UnQueue command normally trashes any background graphics, UnBuffer will politely
restore whatever the BBlits may have overwritten. This is achieved by the BBlit
command actually performing two bliss.

The first blit transfers the area on the bitmap which the shape is about to cover to a
temporary storage area - the second blit actually draws the shape onto the bitmap.
When the time comes to UnBuffer all those BBlits, the temporary storage areas will be
transferred back to the disrupted bitmap.

The Memorylen parameter of the Buffer command refers to how much memory, in
bytes, should be put aside as temporary storage for the preservation of background
graphics. The value of this parameter varies depending upon the size of shapes to be
BBlited, and the maximum number of shapes to be BBlited between UnBuffers.
A Memorylen of 16384 should be plenty for most situations, but may need to be
increased if you start getting 'Buffer Overflow' error messages.

BBlit Buffer#,Shape#,X, Y[,Excessonoff]
The BBlit command is used to draw a shape onto the currently used bitmap, and
preserve the overwritten area into a previously initialized buffer.

144

The optional Excessonoff parameter works identically to the Excessonoff parameter
used by the Blit command.

UnBuffer Buffer#
UnBuffer is used to 'replace' areas on a bitmap overwritten by a series of BBlit
commands. For more information on buffers, please refer to the Buffer command.

FlushBuffer Buffer#
FlushBuffer will force the specified buffer object to be 'emptied', causing the next
UnBuffer command to have no effect.

BBlitMode BLTCON0
BBlitMode allows you to control how the blister operates when BBlitting shapes to
bitmaps.

Stencil Stencil#,BitMap#
The Stencil command will create a stencil object based on the contents of a
previously created bitmap. The stencil will contain information based on all graphics
contained in the bitmap, and may be used with the SBlit and ShowStencil commands.

SBlit Stencil#,Shape#,X,Y[,Excessonoff]
SBlit works identically to the Blit command, and also updates the specified Stencil#.
This is an easy way to render 'foreground' graphics to a bitmap.

SBlitMode BLTCON0
SBlitmode is used to determine how the SBlit command operates. Please refer
to the BlitMode command tor more information on blitting modes.

ShowStencil Buffer#,Stencil#
ShowStencil is used in connection with BBlits and stencil objects to produce a 'stencil'
effect. Stencils allow you create the effect of shapes moving 'between' background and
foreground graphics. Used properly, stencils can add a sense of 'depth' or 'three
dimensionality' to animations.

So what steps are involved in using stencils? To begin with, you need both a bitmap
and a stencil object. A stencil object is similar to a bitmap in that it contains various
graphics. Stencils differ, however, in that they contain no colour information. They
simply determine where graphics are placed on the stencil. The graphics on a stencil
usually correspond to the graphics representing 'foreground' scenery on a bitmap.

So the first step is to set up a bitmap with both foreground and background scenery on
it. Next, a stencil is set up with only the foreground scenery on it. This may be done
using either the Stencil or SBlit command. Now, we BBlit our shapes. This will, of
course, place all the shapes in front of both the background and the foreground

145

graphics. However, once all shapes have been BBlitted, executing the ShowStencil
command will repair the damage done to the foreground graphics!

Block Shape#,X, Y
Block is an extremely fast version of the Blit command with some restrictions. Block
should only be used with shapes that are 16,32,48,64...pixels wide and that are being
blitted to an x position of 0,16,32,48,64...
Note: the height and y destination of the shape are not limited by the Block command.

Block is intended tor use with map type displays.

BlitColl (Shape#,x,y)
BlitColl is a fast way of collision detection when blitting shapes. BlitColl returns -1 if a
collision occurs, 0 if no collision. A collision occurs if any pixel on the current BitMap
is non zero where your shape would have been blitted.

ShapesHit is faster but less accurate as it checks only the rectangular area of each
shape, where as BlitColl takes into account the shape of the shape and of course can
not tell you what shape you have collided with.

ClipBlit ClipBlit Shape#,X, Y
ClipBlit is the same as the Blit command except ClipBlit will clip the shape to the inside
of the used bitmap, all blit commands in Blitz are due to be expanded with this feature.

ClipBlitMode BPLCON0
Same as BlitMode except applies to the ClipBlit command.Another oversight now fixed.

BlockScroll X1,Y1,Width,Height,X2,Y2[,BitMap#]
Same as the Scroll command except that BlockScroll is much faster but only works
with 16 bit aligned areas. This means that X1, X2 and Width must all be multiples of 16.
Useful for block scrolling routines that render the same blocks to both sides of the
display, the programmer can now choose to render just one set and then copy the
result to the other side with the BlockScroll command.

R-18: SPRITE HANDLING COMMANDS

Sprites are another way of producing moving objects on the Amiga's display. Sprites
are, like shapes, graphical objects. However unlike shapes, sprites are handled by the
Amiga's hardware completely separately from bitmaps. This means that sprites do not
have to be erased when it's time to move them, and that sprites in no way destroy or
interfere with bitmap graphics. Also, once a sprite has been displayed, it need not be
referenced again until it has to be moved.

146

In this release of Blitz, sprites are only available in Blitz mode and have either 3 or 15
colours (2 or 4 bitplanes). Each slice may display a maximum of up to 8 sprites. Other
conditions may lower this maximum such as the width, depth and resolution of the
slice. The Amiga hardware has 8 sprite channels, standard 16 wide 3 colour sprites
require a single channel, 15 colour sprites need two and sprites wider than 16 will
require extra channels also. 15 color sprites must use an even numbered channel, the
subsequent odd channel then becomes unavailable.

Sprites also require a special colour palette set up. Fifteen colour sprites take their
RGB values from colour registers 17 through 31. Three colour sprites, however, take on
RGB values depending upon the sprite channels being used to display them. The
following table shows which palette registers at'fect which sprite channels:

Sprite Channel Colour Registers
0,1 17-19
2,3 21-23
4,5 25-27
6,7 29-31

GetaSprite Sprite#,Shape#
To be able to display a sprite, you must first create a sprite object. This will contain the
image information for the sprite. GetaSprite will transfer the graphic data contained in
a shape object into a sprite object. This allows you to perform any of the Blitz shape
manipulation commands (eg Scale or Rotate) on a shape before creating a sprite from
the shape.

Once GetaSprite has been executed, you may not require the shape object anymore.
In this case, it is best to t'ree up the shape object (using Free Shape) to conserve as
much valuable chip memory as possible.

ShowSprite Sprite#,X, Y,Sprite Channel
ShowSprite is the command used to actually display a sprite through a sprite channel.
X and Y specify the position the sprite is to be displayed at. These parameters are
ALWAYS given in lo-resolution pixels. Sprite Channel is a value 0 through 7 which
decides which sprite channel the sprite should be display through.

InFront Sprite Channel
A feature of sprites is that they may be displayed either 'in front of' or 'behind' the
bitmap graphics they are appearing in. The InFront command allows you to determine
which sprites appear in front of bitmaps, and which sprites appear behind.

Sprite Channel must be an even number in the range 0 through 8. After executing an
InFront command, sprites displayed through sprite channels greater than or equal to
Sprite Channel will appear BEHIND any bitmap graphics. Sprites displayed through

147

channels less than Sprite Channel will appear IN FRONT OF any bitmap graphics. For
example, after executing an InFront 4, any sprites displayed through sprite channels
4,5,6 or 7 will appear behind any bitmap graphics, while any sprites displayed through
sprite channels 0,1,2 or 3 will appear in front of any bitmap graphics.

InFront should only be used in non-dualplayfield slices.

InFrontF Sprite Channel
InFrontF is used on dualplayfield slices to determine sprite/playfield priority with
respect to the foreground playfield. Using combinations of InFrontF and InFrontB (used
for the background playfield), it is possible to display sprites at up to 3 different depths:
some in front of both playfields, between the playfields, and behind both playfields.

InFrontB Sprite Channel
InFrontB is used on dualplayfield slices to determine sprite/playtield priority with
respect to the background playtield. Using combinations of InFrontB and InFrontF
(used tor the foreground playfield), it is possible to display sprites at up to 3 different
depths - some in front of both playfields, some between the playfields, and some behind
both playfields.

LoadSprites Sprite#[,Sprite#],Filename$
LoadSprites lets you load a 'range' of sprites from disk into a series of sprite objects.
The file specified by Filename$ should have been created using the SaveSprites
command. The first Sprite# parameter specifies the number of the first sprite object to
be loaded. Further sprites will be loaded into increasingly higher sprite objects. If a
second Sprite# parameter is supplied, then only sprites up to and including the second
Sprite# value will be loaded. If there are not enough sprites in the file to fill this range,
any excess sprites will remain untouched.

SaveSprites Sprite#,Sprite#,Filename$
SaveSprites allows you to create a file containing a range of sprite objects. This file
may be later loaded using the LoadSprites command.

The range of sprites to be saved is specified by Sprite#,Sprite#, where the first Sprite#
refers to the lowest sprite to be saved and the second Sprite# the highest.

SpriteMode mode
For use with the capabilities of the new Display library SpriteMode is used to define the
width of sprites to be used in the program. The mode values 0, 1 and 2 correspong to
the widths 16, 32 and 64

R-l9: COLLISION DETECTION COMMANDS

This section deals with various commands involved in detection of object collisions.

148

SetColl Colour,Bitplanes[Playfield]
There are 3 different commands involved in controlling sprite/bitmap collision
detection, of which SetColl is one (the other 2 being SetCollOdd and SetCollHi). All
three determine what colours in a bitmap will cause a collision with sprites. This
allows you to design bitmaps with 'safe' and 'unsafe' areas.

SetColl allows you to specify a single colour which, when present in a bitmap, and in
contact with a sprite, will cause a collision. The Colour parameter refers to the
'collidable' colour. Bitplanes refers to the number of bitplanes (depth) that bitmap
collision are to be tested in.

The optional PlayField parameter is only used in a dualplayfield slice. If Playfield is 1,
then Colour refers to a colour in the foreground bitmap. If Playfield is 0, then Colour
refers to a colour in the background bitmap.

DoColl and PColl are the commands used for actually detecting the collisions.

SetCollOdd
SetCollOdd is used to control the detection of sprite/bitmap collisions. SetCollOdd will
cause ONLY the collisions between sprites and 'odd coloured' bitmap graphics to be
reported. Odd coloured bitmap graphics refers to any bitmap graphics rendered in an
odd colour number (de: 1,3,5...). This allows you to design bitmap graphics in such a
way that even coloured areas are 'safe' (de: they will not report a collision) whereas
odd colour areas are 'unsafe' (de: they will report a collision).

DoColl and PColl commands are used to detect the actual sprite/bitmap collisions.

SetCollHi BitPlanes
SetCollHi may be used to enable sprite/bitmap collisions between sprites and the 'high
half' colour range of a bitmap. For example, if you have a 16 colour bitmap, the high half
of the colours would be colours 8 through 15.

The BitPlanes parameter should be set to the number of bitplanes (depth) of the bitmap
with which collisions should be detected.

Please refer to the SetColl command for more information on sprite/bitmap collisions.
DoColl
DoColl is used to perform sprite/bitmap collision checking. Once DoColl is executed,
the PColl and/or SColl functions may be used to check for sprite/bitmap or sprite/sprite
collisions.

Before DoColl may be used with PColl, the type of bitmap collisions to be detected
must have been specified using one of the SetColl, SetCollOdd or SetCollHi commands.

149

After executing a DoColl, PColl and SColl will return the same values until the next time
DoColl is executed.

PColl (Sprite Channel)
PColl function may be used to find out if a particular sprite has collided with any
bitmaps. Sprite Channel refers to the sprite channel of the sprite you wish to check is
being displayed through.

If the specified sprite has collided with any bitmap graphics, PColl will return a true (-1)
value, otherwise PColl will return false (0).

Before using PColl, a DoColl must previously have been executed.

SColl (Sprite Channel, Sprite Channel)
SColl may be used to determine whether the 2 sprites currently displayed through the
specified sprite channels have collided. If they have, SColl will return true (-1),
otherwise SColl will return false (0).DColl must have been executed prior to using SColl.

ShapesHit (Shape#,X,Y,Shape#,X,Y)
ShapesHit function will calculate whether the rectangular areas occupied by 2 shapes
overlap. ShapesHit will automatically take the shape handles into account. If the 2
shapes overlap, ShapesHit will return true (-1),otherwise ShapesHit will return false (0).

ShapeSpriteHit (Shape#,X,Y,Sprite#,X,Y)
The ShapeSpriteHit function will calculate whether the rectangular area occupied by a
shape at one position, and the rectangular area occupied by a sprite at another position
are overlapped. If the areas do overlap, ShapeSpriteHit will return true (-1), otherwise
ShapeSpriteHit will return false (0). ShapeSpriteHit automatically takes the handles of
both the shape and the sprite into account.

SpritesHit (Sprite#,X,Y,Sprite#,X,Y)
SpritesHit function will calculate whether the rectangular areas occupied by 2 sprites
overlap. SpritesHit will automatically take the sprite handles into account. If the 2
sprites overlap, SpritesHit will return true (-1), otherwise SpritesHit will return false (0).

Care should be taken with the pronunciation of this command.
RectsHit (X1,Y1,Width1,Height1,X2,Y2,Width2,Height2)
The RectsHit function may be used to determine whether 2 arbitrary rectangular areas
overlap. If the specified rectangular areas overlap, RectsHit will return true (-1),
otherwise RectsHit will return false (0).

Care should be taken with the pronunciation of this command.

R-20: PALETTE COMMANDS

150

Amiga colours are represented as values for the three primary colours red, green and
blue. These values are combined as an RGB value. Palettes are Blitz objects that
contain a series of RGB values that represent the colours used by the display.

Palette information can be loaded from an IFF file or defined using the
PalRGB/AGAPalRGB commands. Palettes can be assigned to screens and slices
with both the Use Palette and ShowPalette commands.

Many commands are available for manipulating the colours within a palette.

Colour values on slices and screens can also be changed directly without the use of
palettes using the RGB and AGARGB commands.

Load Palette Palette#, Filename$[, Palette Offset]
LoadPalette creates and initializes a palette object. Filename$ specifies the name
of an ILBM IFF file containing colour information. If the file contains colour cycling
information, this will also be loaded into the palette object.

An optional Palette Offset may be specified to allow the colour information to be
loaded at a specified point (colour register) in the palette. This is especially useful in
the case of sprite colours, as these must begin at colour register sixteen.

LoadPalette does not actually change any display colours. Once a palette is loaded,
Use Palette can be used to cause display changes.

ShowPalette Palette#
ShowPalette replaces Use Palette for copying a palette's colours to the current Screen
or Slice.

Use Palette Palette#
Use Palette transfers palette information from a palette object to a displayable palette.
If executed in Amiga mode, palette information is transferred into the palette of the
currently used Screen. If executed in Blitz mode, palette information is transferred into
the palette of the currently used Slice.

NewPaletteMode On l Off
NewPaletteMode flag has been added for compatibility with older Blitz programs. By
setting NewPaletteMode to On the Use Palette command merely makes the specified
palette the current object and does not try to copy the colour information to the
current Screen or Slice.

Free Palette Palette#
Free Palette erases all information in a palette object. That Palette object may no
longer be Used or Cycled.

151

SavePalette Palette#,FileName$
Creates a standard IFF "CMAP" file using the given Palette's colors.

CyclePalette Palette#
CyclePalette uses the standard color cycling parameters in the palette object to cycle
the colors. Unlike the Cycle command which copied the resulting palette to the
current screen the CyclePalette command just modifies the palette object and can
hence be used with the DisplayBitmap command in the new Display library.

FadePalette SrcPaleffe#,DestPalette#, Brightness. q ;palettelib
FadePalette multiplies all colours in a Palette by the Brightness argument and maces
the result in the DestPalette.

lnitPalette Palette#,NumColors
InitPalette simply initialises a palette object to hold NumColors. All colors will be set to
black.

DecodePalette Palette#,MemoryLocation[,Palette Offset]
DecodePalette allows the programmer to unpack included iff palette information to
Blitz palette objects.

Pal RGB Palette#, Colour Register,Bed,Green,Blue
PalRGB allows you to set an individual colour register within a palette object. Unless an
RGB has also been executed, the actual colour change will not come into effect until
the next time ShowPalette is executed.

RGB Colour Register,Red,Green,Blue
RGB enables you to set individual colour registers in a palette to an RGB colour value.
If executed in Amiga mode, RGB sets colour registers in the currently used screen. If
executed in Blitz Mode, RGB sets colour registers in the currently used slice. Note that
RGB does not alter palette objects in any

Red (Colour Register)
Red returns the amount of RGB red in a specified colour register. If executed in Amiga
mode, Red returns the amount of red in the specified colour register of the currently
used screen. If executed in Blitz mode, Red returns the amount of red in the specified
colour register of the currently used slice. Red will always return a value between 0..15

Green (Colour llegister)
Green returns the amount of RGB green in a specified colour register. If executed in
Amiga mode, Green returns the amount of green in the specified colour register of the
currently used screen. If executed in Blitz mode, Green returns the amount of green in

152

the specified colour register of the currently used slice. Green will always return a
value in the range zero to fifteen.

Blue (Colour Register)
Blue returns the amount of RGB blue in a specified colour register. If executed in
Amiga mode, Blue returns the amount of blue in the specified colour register of the
currently used screen. If executed in Blitz mode, Blue returns the amount of blue in
the specified colour register of the currently used slice.
Blue will always return a value in the range 0 to 15.

AGARGB Colour Register,Red,Green,Blue
The AGARGB command is the AGA equivalent of the RGB command. The 'Red', 'Green'
and 'Blue' parameters must be in the range 0 through 255, while 'Colour Register' is
limited to the number of colours available on the currently used screen.

AGAPalRGB Palette#, Colour Register,Red,Green,Blue
The AGAPalRGB command is the AGA equivalent of the PalRGB command.
AGAPalRGB allows you to set an individual colour register within a palette object.
This command only sets up an entry in a palette object, and will not alter the actual
screen palette until a 'ShowPalette' is executed.

AGARed (colour register)
The AGARed function returns the red component of the specified colour register within
the currently used screen. The returned value will be within the range 0 (being no red)
through 255 (being full red).

AGAGreen (colour register)
The AGAGreen function returns the green component of the specified colour register
within the currently used screen. The returned value will be within the range 0 (being
no green) through 255 (being full green).

AGABlue (colour register)
The AGABlue function returns the blue component of the specified colour register
within the currently used screen. The returned value will be within the range 0
(being no blue) through 255 (being full blue).

SetCycle Palette#, Cycle,Low Colour,High Colour [,Speed]
SetCycle is used to configure colour cycling information for the Cycle command. Low
and high colours specify the range of colours that will cycle. You may have a maximum
of 7 different cycles for a single palette. The optional parameter Speed specifies how
quickly the colours will cycle, a negative value will cycle the colours backwards.

Cycle Palette#
Cycle will cause the colour cycling information contained in the specified palette to be

153

cycled on the currently used Screen. Colour cycling information is created when
LoadPalette is executed or with the SetCycle command.

StopCycle will halt all colour cycling started with the Cycle command

Fadeln Palette#[,Rate[Low Colour, High Colour]]
Fadein will cause the colour palette of the currently used slice to be 'faded in' from
black up to the RGB values contained in the specified Palette#.

Rate# allows to control the speed of the fade, with 0 being the fastest fade. Low Colour
and High Colour allow to control which colour palette registers are affected by the fade

FadeOut Palette#[,Rate[Low Colour, High Colour]]
Fadeout will cause the colour palette of the currently used slice to be 'faded out' from
the RGB values contained in the specified Palette# down to black.

Rate# allows to control the speed of the fade, with 0 being the fastest fade. Low Colour
and High Colour allow to control which colour palette registers are affected by the fade

For FadeOut to work properly, the RGB values in the currently used slice should be set
to the specified Palette# prior to using FadeOut.

ASyncFade On l Off
ASyncFade allows you control over how the FadeIn and FadeOut commands work.
Normally, FadeIn and FadeOut will halt program flow, execute the entire fade, and
then continue program flow. This is ASyncFade Off mode.

ASyncFade On will cause FadeIn and FadeOut to work differently. Instead of performing
the whole fade at once, the programmer must execute the DoFade command to perform
the neixt step of the fade. This allows fading to occur in parallel with program flow.

DoFade
DoFade will cause the next step of a fade to be executed. ASyncFade On, and a FadeIn
or FadeOut must be executed prior to calling DoFade.
The FadeStatus function may be used to determine whether there are any steps of
fading left to perform.

FadeStatus
FadeStatus is used in conjunction with the DoFade command to determine if any steps
of fading have yet to be performed. If a fade process has not entirely finished yet (de:
more DoFades are required), then FadeStatus will return true (-1). If not, FadeStatus
will return false (0). Please refer to ASyncFade and DoFade for more information.

PaletteRange Palette#,StartCol,EndCol,r0,g0,b0,r1,g1,b1

154

PaletteRange creates a spread of colors within a palette. Similar to DPaint's spread
function PaletteRange takes a start and end colour and creates the color tweens
between them.

DuplicatePalette SrcPalette#,DestPalette#
DuplicatePalette simply creates a new Palette which exactly matches the SrcPalette.

R-21: SOUND MUSIC & SPEECH COMMANDS

Sound objects are used to store audio information. This information can be taken from
an 8SVX IFF file using LoadSound, or defined by hand through a BASIC routine using
InitSound and SoundData. Once a sound is created, it may be played through the
Amiga's audio hardware.

Blitz supports loading and playing of both soundtracker and medmodule music files.

The Amiga speech synthesiser is also accessible from Blitz. The narrator.device has
been upgraded in 2.0 increasing the quality of the speech. With a bit of messing around
you can have a lot of fun with the Amiga's 'voice'.

LoadSound Sound#,Filename$
LoadSound creates a sound object for later playback. The sound is taken from an 8SVX
IFF file. An error will be generated if the specified file is not in the correct IFF format.

Sound Sound#,Channelmask[, Vol1[, Vol2...]
Sound causes a previously created sound object to be played through the Amiga's
audio hardware. Channelmask specifies which of the Amiga's four audio channels the
sound should be played through, and should be in the range one through fifhteen.

The following is a list of Channelmask values and their effect:

Mask Channel0 Channel1 Channel2 Channel3
1 on off off off
2 off on off off
3 on on off off
4 off off on off
5 on off on off
6 off on on off
7 on on on off
8 off off off on
9 on off off on
10 off on off on
11 on on off on
12 off off on on
13 on off on on

155

14 off on on on
15 on on on on

In the above table, any audio channels specified as 'off' are not altered by Sound, and
any sounds they may have previously been playing will not be affected.

The Volx parameters allow individual volume settings for different audio channels.
Volume settings must be in the range zero through 64, zero being silence, and 64 being
loudest. The first Vol parameter specifies the volume for the lowest numbered 'on'
audio channel, the second Vol for the next lowest and so on.
For example, assume you are using the following Sound command: Sound 0,10,32,16

The Channelmask of ten means the sound will play through audio channels one and
three. The first volume of 32 will be applied to channel one, and the second volume of
16 will be applied to channel three.

Any Vol parameters omitted will be cause a volume setting of 64.

LoopSound Sound#,Channelmask[, Vol1[, Vol2...]
LoopSound behaves identically to Sound, only the sound will be played repeatedly.
Looping a sound allows for the facility to play the entire sound just once, and begin
repeating at a point in the sound other than the beginning. This information is picked up
from the 8SVX IFF file, when LoadSound is used to create the sound, or from the offset
parameter of InitSound.

Volume Channelmask, Vol1[, Vol2...]
Volume allowsyou to dynamically alter the volume of an audio channel. This enables
effects such as volume fades. For an explanation of Channelmask and Vol parameters,
please refer to the Sound command.

InitSound Sound#,LengthLPeriod[, Repeat]
InitSound initializes a sound object in preparation for the creation of custom sound
data. This allows simple sound waves such as sine or square waves to be
algorithmically created. SoundData should be used to create the actual wave data.

Length refers to the length, in bytes, the sound object is required to be.
Length MUST be less than 128K, and MUST be even.

Period allows you to specify a default pitch for the sound. A period of 428
will cause the sound to be played at approximately middle 'C'.

Otfset is used in conjunction with LoopSound, and specifies a position in the sound at
which repeating should begin. Please refer to LoopSound for more information on
repeating sounds.

156

SoundData Sound#,Offset,Data
SoundData allows you to manually specify the waveform of a sound object.
The sound object should normally have been created using InitSound, although
altering IFF sounds is perfectly legal.

SoundData alters one byte of sound data at the specified Offset. Data refers to the
actual byte to place into the sound, and should be in the range -128 to +127.

PeekSound (Sound#,Offset)
PeekSound returns the byte of a sample at specified offset of sound object specified.

DecodeSound Sound#,MemoryLocation
DecodeSound, similar to the other new Decode commands allows the programmer
to include sound files within their program's object code.

SetPeriod Sound#,Period
This command allows the programmer to manually adjust the period of the sound
object to change it's effective pitch.

DiskPlay Filename$, Channelmask[, Vol1[, Vol2...]
DiskPlay will play an 8SVX IFF sound file straight from disk. This is ideal for situations
where you simply want to play a sample without the extra hassle of loading a sound,
playing it, and then freeing it. The DiskPlay command will also halt program flow until
the sample has finished playing.

DiskPlay usually requires much less memory to play a sample than the LoadSound,
Sound technique. Also, DiskPlay allows you to play samples of any length, whereas
LoadSound only allows samples up to 128K in length to be loaded.

DiskBuffer Bufferlen
DiskBuffer allows you to set the size of the memory buffer used by the DiskPlay
command. This Buffer is by default set to 1024 bytes, and should not normally have
to be set to more than this.
Reducing the buffer size by too much may cause loss of sound quality of the DiskPlay
command.

If you are using DiskPlay to access a very slow device, the buffer size may have to be
increased.

Filter On l Off
Filter may be used to turn on or off the Amiga's low pass audio filter.

LoadModule Module#,Filename$
LoadModule loads in from disk a soundtracker/noisetracker music module.

157

This module may be later played back using PlayModule.

Free Module Module#
Free Module may be used to delete a module object. Any memory occupied by
the module will also be free'd.

PlayModule Module#
PlayModule will cause a previously loaded soundtracker/noisetracker song module
to be played back.

StopModule
StopModule will cause any soundtracker/noisetracker modules which may be currently
playing to stop.

Load Med Module MedModule# Name
The LoadMedModule command loads any version 4 channel Octamed module. Following
routines support up to and including version 3 of the Amiganut's Med standard.

The number of MedModules loaded in memory at one time is only limited by the
MedModules maximum set in the Blitz Options requester. Like any Blitz commands
that access files LoadMedModule can only be used in AmigaMode.

StartMedModule MedModule#
StartMedModule is responsible for initialising the module including linking after it is
loaded from disk using the LoadMedModule command. It can also be used to restart
a module from the beginning.

PlayMed
PlayMed is responsible for playing the current MedModule, it must be called every 50th
of a second either on an interupt (#5) or after a VWait in a program loop.

StopMed
StopMed will cause any med module to stop playing. This not only means that PlayMed
will have no affect until the next StartMedModule but silences audio channels so they
are not left ringing as is the effect when PlayMed is not called every vertical blank.

JumpMed Pattern#
JumpMed will change the pattern being played in the current module.

SetMedVolume Volume
SetMedVolume changes the overall volume that the Med Library plays the module, all
the audio channels are affected. This is most useful for fading out music by slowly
decreasing the volume from 64 to 0.

158

GetMedVolume Channel#
GetMedVolume returns the current volume setting of the specified audio channel. This
is useful for graphic effects required to sync to certain channels of the music playing.

GetMedNote Channel#
GetMedNote returns the current note playing from the specified channel. As with
GetMedVolume this is useful for producing graphics effects synced to the music the
Med Library is playing.

GetMedinstr Channel
GetMedInstr returns the current instrument playing through the specified audio
channel.

SetMedMask Channel Mask
SetMedMask allows the user to mask out audio channels needed by sound effects
stopping the Med Library using them.

DecodeMedModule MedModule#,MemoryLocation
DecodeMedModule replaces the cludgemedmodule, as med modules are not packed
but used raw, DecodeMedModule simply checks to see the memory location passed is
in ChipMem (if not it copies the data to chip) and points the Blitz MedModule object to
that memory.

. Speak string$
The Speak command will first convert the given string to phonetics and then pass it to
the Narrator.Device. Depending on the settings of the Narrator device (see SetVoice)
the Amiga will "speak" the string you have sent in the familiar Amiga synthetic voice.

SetVoice rate,pitch,expression,sex, volume,frequency
SetVoice alters the sound of the Amiga's speech synthsiser by changing the vocal
characteristics listed in the parameters above.

Translate$ (string$)
Translate$() returns the phonetic equivalent of the string for use with the
PhoneticSpeak command.

PhoneticSpeak phonetic$
PhoneticSpeak is similar to the Speak command but should only be passed strings
containing legal phonemes such as that produced by the Translate$() function.

VoiceLoc
VoiceLoc returns a pointer to the internal variables in the speech synthesiser that
enable the user to access new parameters added to the V37 Narrator Device.

159

Formants as referred to in the descriptions are the major vocal tracts and are
separated into the parts of speech that produce the bass, medium and trebly sounds.

R-22: SCREEN COMMANDS

The following section covers the Blitz commands that let you open and control Intuition
based Screen objects.

Command Description

Screen Screen#,Mode[, Title$] Screen#,X, Y, Width,Height,Depth,
VMode,Title$,Dpen,Bpen[BMap#]
Screen will open an Intuition screen. The are 2 formats of the screen command, a
quick format, and a long format.

The quick format of the Screen commands involves 3 parameters - Screen#, Mode and
an optional Title$.

Screen# specifies the screen object to create.

Mode specifies how many bitplanes the screen is to have, and should be in the range 1
through 6. Adding 8 to Mode will cause a hi-res screen to be opened, as opposed to the
default lo-res screen. A hi-res screen may only have from 1 to 4 bitplanes. Adding 16 to
Mode will cause an interlaced screen to be opened. Title$ allows you to add a title to
the screen.

The long format of Screen gives you much more control over how the screen is opened.

The VMode parameter refers to the resolution of the Screen, add the values together to
make up the screenmode you require:

hires =$8000
ham =$200

superhires =$20
interlace =4

lores =0

ShowScreen Screen#
ShowScreen will cause the specified screen object to be moved to front of the display.

WbToScreen Screen#
WbToScreen will assign the Workbench screen a screen object number. This allows

160

you to perform any of the functions that you would normally do own your own screens,
on the Workbench screen. It's main usage is to allow you to open windows on the
Workbench screen.

After execution, the Workbench screen will become the currently used screen.

FindScreen Screen#[, Title$]
This command will find a screen and give it an object number so it can be referenced in
your programs. If Title$ is not specified, then the foremost screen is found and given
the object number Screen#. If the Title$ argument is specified, then a screen will be
searched for that has this name.

After execution, the found screen will automatically become the currently used screen.

LoadScreen Screen#, Filename$[, Palette#]
LoadScreen loads an IFF ILBM picture into the screen object specified by Screen#.
The file that is loaded is specified by Filename$.

You can also choose to load in the colour palette for the screen, by specifying the
optional Palette#. This value is the object number of the palette you want the pictures
colours to be loaded into. For the colours to be used on your screen, you will have to
use the statement.

SaveScreen Screen#,Filename$
SaveScreen will save a screen to disk as an IFF ILBM file. The screen you wish to save
is specified by the Screen#, and the name of the file you to create is specified by
Filename$.

SMouseX
SMouseX returns the horizontal position of the mouse relative to the left edge of the
currently used screen.

SMouseY
SMouseY returns vertical position of the mouse relative to top of the current screen.

ViewPort (Screen#)
The ViewPort function returns the location of the specified screens ViewPort. The
ViewPort address can be used with graphics.library commands and the like.

ScreenPens active text,inactive text,hilight,shadow,active fill,gadget fill
ScreenPens configures the 10 default pens used for system gadgets in WB 2. Any
Screens opened after a ScreenPens statement will use the pens defined. This command
will have no affect when used with Workbench 1.3 or earlier.

161

CloseScreen Screen#
CloseScreen has been added for convenience. Same as Free Screen but a little more
intuitive (especially for those that have complained about such matters (yes we care)).

HideScreen Screen#
Move Screen to back of all Screens open in the system.

BeepScreen Screen#
Flash specified screen.

MoveScreen Screen#,deltax,deltay
Move specified screen by specified amount. Good for system friendly special effects.

ScreenTags Screen#,Title$[&TagList]or[[,Tag,Data]...]
Full access to all the Amiga's new display resoutions is now available in Amiga mode
by use of ScreenTags command. Following tags are of most interest to programmers.

#Left=$80000021 : #Top=$80000022 : #Width=$80000023
#Height=$80000024 : #Depth=$80000025 : #DetailPen=$80000026
#BlockPen=$80000027
#Title=$80000028 : #Colors=$80000029 : #ErrorCode=$8000002A
#Font=$8000002B : #SysFont=$8000002C : #Type=$8000002D
#BitMap=$8000002E
#PubName=$8000002F : #PubSig=$80000030
#PubTask=$80000031 : #DisplayID=$80000032
#DClip=$80000033 : #0verscan=$80000034
#ShowTitle=$80000036 : #Behind=$80000037 : #Quiet=$80000038
#AutoScroll=$80000039 : #Pens=$8000003A
#FullPalette=$8000003B : #ColorMapEntries=$8000003C
#Parent=$8000003D : #Draggable=$8000003E
#Exclusive=$8000003F
#SharePens=$80000040 : #BackFill=$80000041
#Interleaved=$80000042
#Colors32=$80000043 : #VideoControl=$80000044
#FrontChild=$80000045 : #BackChild=$80000046
#LikeWorkbench=$80000047 : #Reserved=$80000048

ShowBitMap [BitMap#]
The ShowBitMap command is the Amiga-mode version of the Show command. It
enables you to change a Screens bitmap allowing double buffered (flicker free)
animation to happen on a standard Intuition Screen. Unlike Blitz mode it is better to
do ShowBitMap then VWait to sync up with the Amiga's display, this will make sure
the new bitmap is being displayed before modifying the previous BitMap.

162

R-23: WINDOW COMMANDS

Windows are the heart of the user friendly Amiga operating system. Not only are they
the graphics device used for both user input and display but are the heart of the
messaging system that communicates this information to your program by way of the
events system.

Typically a Blitz program will either open or find a screen to use,define a list of gadgets
and then open a window on the screen with the gadget list attached. It will then wait
for an event such as the user selecting a menu or hitting a gadget and act accordingly.

The program can specify which events they wish to receive by modifying the IDCMP
flags for the window. Once an event is received Blitz has a wide range of commands
for finding out exactly what the user has gone and done.

Blitz also offers a number of drawing commands that allow the programmer to
render graphics to the currently used window.

Command Description

Window Window#,X, Y, Width, Height, Flags, Title$, Dpen,
Spen[,GadgetList#]
Window opens an Intuition window on the currently used screen. Window# is a unique
object number for the new window. X & Y refer to the offset from top left of the screen
the window is to appear at. Width and Height are the size of the window in pixels.

Flags are the special window flags that a window can have when opened. These flags
allow for the inclusion of a sizing gadget, dragbar and many other things. The flags are
listed as followed, with their corresponding values. To select more than one of these
flags, they must be logically Or'd together using the 'l ' operator.

For example, to open a window with dragbar and sizing gadget which is active
once opened, you would specify a Flags parameter of $1 I $2 I $1000.

Title$ is a BASIC string, either a constant or a variable, that you want to be the title of
the window.

Dpen is the colour of the detail pen of the window. This colour is used for window title.

BPen is the block pen of the window. This pen is used for things like the border around
the edge of the window.

The optional GadgetList# is the number of a gadgetlist object you have may want
attached to the window.

163

After the window has opened, it will become the currently used window.

The Window library has been extended to handle super bitmap windows. SuperBitMap
windows allow the window to have it's own bitmap which can actually be larger than
the window. The two main benefits of this feature are the window's ability to refresh
itself and the ability to scroll around a large area "inside" the bitmap.

To attach a BitMap to a Window set the SuperBitMap flag in the flags field and include
the BitMap# to be attached.

Window Flag Value Description

WINDOWSIZING $0001 Attaches sizing gadget to bottom right corner of window
and allows it to be sized.

WINDOWDRAG $0002 Allows window to be dragged with the mouse by it's title bar.
WINDOWDEPTH $0004 Lets windows be pushed behind or in front of other windows.
WINDOWCLOSE $0008 Attaches a closegadget to the upper left corner of the window.
SIZEBRIGHT $0010 With GIMMEZERO & ZEROWINDOWSIZING set, this will leave

the right hand margin, the width of the sizing gadget, clear,
and drawing in window will not extend over this right margin.

SIZEBBOTTOM $0020 Same as SIZEBRIGHT except it leaves a margin at the bottom
 of the window, the width of the sizing gadget.

BACKDROP $0100 This opens the window behind any other window that is
already opened. It cannot have the WINDOWDEPTH flag set
also, as the window is intended to stay behind all others.

GIMME00 $0400 This flag keeps the windows border separate from the rest of
the windows area. Any drawing on the window, extending to
the borders, will not overwrite the border. NOTE: Although
convevient, this does take up more memory than usual.

BORDERLESS $0800 Opens a window without any border on it at all.
ACTIVATE $1000 Activates the window once opened.

Use Window Window#
Use Window will cause the specified window object to become the currently used
window. Use Window also automatically performs a WindowInput and WindowOutput
on the specified window.

Free Window Window#
Free Window closes down a window. This window is now gone, and can not be
accessed any more by any statements or functions. Once a window is closed, you may
want to direct the input and output somewhere new, by calling Use Window on another
window, DefaultOutput/DefaultInput, or by some other appropriate means. Window# is
the window object number to close.

164

WindowInput Window#
Windowinput will cause any future executions of the Inkey$, Edit$ or Edit functions to
receive their input as keystrokes from the specified window object.

WindowInput is automatically executed when either a window is opened, or
Use Window is executed.

After a window is closed (using Free Window), remember to tell Blitz to get it's input
from somewhere else useful (for example, using another WindowInput command)
before executing another Inkey$, Edit$ or Edit function.

WindowOutput Window#
WindowOutput will cause any future executions of either the Print or NPrint
statements to send their output as text to the specified window object.

WindowOutput is automatically executed when either a window is opened, or
Use Window is executed.

After a window is closed (using Free Window), remember to send output somewhere
else useful (for example, using another WindowOutput command) before executing
another Print or NPrint statement.

DefaultlDCMP IDCMP_Flags
DefaultIDCMP allows you to set the IDCMP flags used when opening further windows.
You can change the flags as often as you like, causing all of your windows to have
their own set of IDCMP flags if you wish.

A window's IDCMP flags will affect the types of 'events' reportable by the window.
Events are reported to a program by means of either the WaitEvent or Event functions.

To select more than one IDCMP Flag when using DefaultIDCMP, combine the separate
flags together using the OR operator ('I').

Any windows opened before any DefaultIDCMP command is executed will be opened
using an IDCMP flags setting of:

$2 I $4 I $8 I $20 I $40 I $100 I $200 I $400 I $40000 I $80000.

This should be sufficient for most programs.

If you do use DefaultIDCMP for some reason, it is important to remember to include all
flags necessary for the functioning of the program. For example, if you open a window
which is to have menus attached to it, you MUST set the $100 (menu selected) IDCMP
flag, or else you will have no way of telling when a menu has been selected.

165

IDCMP FlagEvent
$2 Reported when a window has it's size changed.
$4 Reported when a windows contents have been

corrupted. This may mean a windows contents may
need to be re-drawn.

$8 Reported when either mouse button has been hit.
$10 Reported when the mouse has been moved.
$20 Reported when a gadget within a window has been

pushed 'down'.
$40 Reported when a gadget within a window has been

'released'.
$100 Reported when a menu operation within a window has

occured.
$200 Reported when the 'close' gadget of a window has

been selected.
$400 Reported when a keypress has been detected.
$8000 Reported when a disk is inserted into a disk drive.
$10000 Reported when a disk is removed from a disk drive.
$40000 Reported when a window has been 'activated'.
$80000 Reported when a window has been 'de-activated'.

AddlDCMP IDCMP_Flags
AddIDCMP allows you to 'add in' IDCMP flags to the IDCMP flags selected by
DefaultIDCMP. Please refer to DefaultIDCMP for a thorough discussion of IDCMP flags.

SublDCMP IDCMP_Flags
SubIDCMP allows you to 'subtract out' IDCMP flags from the IDCMP flags selected by
DefaultIDCMP. Please refer to DefaultIDCMP for a thorough discussion of IDCMP flags.

WaitEvent
WaitEvent will halt program excution until an Intuition event has been received. This
event must be one that satisfies the IDCMP flags of any open windows. If used as a
function, WaitEvent returns the IDCMP flag of the event (please refer to DefaultIDCMP
for a table of possible IDCMP flags). If used as a statement, you have no way of telling
what event occured.

You may find the window object number that caused the event using the EventWindow
function.

In the case of events concerning gadgets or menus, further functions are available to
detect which gadget or menu was played with.

In the case of mouse button events, the MButtons function may be used to
discover exactly which mouse button has been hit.

166

IMPORTANT NOTE: If you are assigning the result of WaitEvent to a variable,
MAKE SURE that the variable is a long type variable.

For example: MyEvent.l=WaitEvent

Event
Event works similarly to WaitEvent in that it returns the IDCMP flag of any outstanding
windows events. However, Event will NOT cause program flow to halt. Instead, if no
event has occured, Event will return 0.

EventWindow
EventWindow is used to determine in which window the most recent window event
occured. Window events are detected by use of either WaitEvent or Event commands.
EventWindow returns the window object number in which the most recent window
event occured

Flush Events [IDCMP_Flag]
When window events occur in Blitz, they are automatically 'queued' for you. This means
that if your program is tied up processing one window event while others are being
created, you wont miss out on anything. Any events which may have occured between
executions of WaitEvent or Event will be stored in a queue for later use. There may be
situations where you want to ignore this backlog of events.Use FlushEvents to make it.

Executing FlushEvents with no parameters will completely clear Blitz's internal event
queue, leaving you with no outstanding events. Supplying an IDCMP_Flag parameter will
only clear events of the specified type from the event queue.

GadgetHit
GadgetHit returns the identification number of the gadget that caused the most recent
'gadget pushed' or 'gadget released' event.

As gadgets in different windows may possibly posess the same identification numbers,
you may also need to use EventWindow to tell exactly which gadget was hit.
MenuHit
MenuHit returns the identification number of the menu that caused the last menu
event. As with gadgets, you can have different menus for different windows with same
identification number. Therefore you may also need to use EventWindow to find which
window caused the event. If no menus have yet been selected, Menuhit will return -1.

ItemHit
ItemHit returns the identification nr. of the menu item that caused the last menu event.

SubHit

167

SubHit returns the identification number of the the menu subitem that caused
the last menu event. If no subitem was selected, SubHit will return -1.

MButtons
MButtons returns the codes for the mouse buttons that caused the most recent
'mouse buttons' event. If menus have been turned off using Menus Off, then
the right mouse button will also register an event and can be read with MButtons.

RawKey
RawKey returns the raw key code of a key that caused most recent 'key press' evens.

Qualifier
Qualifier will return the qualifier of the last key that caused a 'key press' event to
occur. A qualifier is a key which alters the meaning of other keys; for example the
'shift' keys. Here is a table of qualifier values and their equivalent keys:

Key Left Right

UnQualified $8000 $8000
Shift $8001 $8002
Caps Lock Down $8004 $8004
Control $8008 $8008
Alternate $8010 $8020
Amiga $8040 $8080

A combination of values may occur, if more that one qualifier key is being held down.
The way to filter out the qualifiers that you want is by using the logical AND operator.

WPlot X,Y,Colour
WPlot plots a pixel in the currently used window at the coordinates X,Y in the colour
specified by Colour.

WBox X1,Y1,X2,Y2,Colour
WBox draws a solid rectangle in the currently used window. The upper left hand
coordinates of the box are specified with the X1 and Y1 values, and the bottom right
hand corner of the box is specified by the values X2 and Y2.

WCircle X,Y,Radius,Colour
WCircle allows to draw a circle in currently used window. You specify the centre of the
circle with the coordinates X,Y. The Radius value specifies the radius of the circle you
want to draw. The last value, Colour specifies what colour the circle will be drawn in.

WEllipse X,Y,X Radius,Y Radius,Colour
WEllipse draws an ellipse in the currently used window. You specify the centre of the

168

ellipse with the coordinates X,Y. X Radius specifies the horizontal radius of the ellipse,
Y Radius the vertical radius.

Colour refers to the colour in which to draw the ellipse.

WLine X1,Y1,X2,Y2[,Xn, Yn..],Colour
Wline allows you to draw a line or a series of lines into the currently used window. The
first two sets of coordinates X1,Y1,X2,Y2, specify the start and end points of the initial
line. Any coordinates specified after these initial two, will be the end points of another
line going from the last set of end points, to this set. Colour is the colour of the line(s)
that are to be drawn.

WCls [Colour]
WCls will clear the currently used window to colour 0, or a colour is specified, then it
will be cleared to this colour. If the current window was not opened with the
GIMMEZEROZERO flag set, then this statement will clear any border or title bar that the
window has. The InnerCls statement should be used to avoid these side effects..

InnerCls [Colour]
InnerCls will clear only the inner portion of the currently used window. It will not clear
the titlebar or borders as WCls would do if your window was not opened with the
GIMMEZEROZERO flag set. If a colour is specified, then that colour will be used to clear
the window.

WScroll X1,Y1,X2,Y2,Delta X,Delta Y
WScroll will cause a rectangular area of the currently used window to be moved or
'scrolled'. X1 and Y1 specify the top left location of the rectangle, X2 and Y2 the
bottom right. The Delta parameters determine how far to move the area. Positive
values move the area right/down, while negative values move the area left/up.

Cursor Thickness
Cursor will set the style of cursor that appears when editing strings or numbers with
the Edit$ or Edit functions. If Thickness is less than 0, then a block cursor will be used.
If the Thickness is greater then 0, then an underline Thickness pixels high will be used.
Editat
After executing an Edit$ or Edit function, Editat may be used to determine the
horizontal character position of the cursor at the time the function was exited.

Through the use of Editat, EditExit, EditFrom and Edit$, simple full screen editors may
be put together.

EditFrom [Characterpos]
EditFrom allows you to control how the Edit$ and Edit functions operate when used
within windows.

169

If a Characterpos parameter is specified, then the next time an edit function is
executed, editing will commence at the specified character position (0 being the first
character position).

Also, editing may be terminated by the use of the 'return' key or also by any non
printable character ('up arrow' or 'Esc') or a window event. When used in conjunction
with Editat and EditExit, this allows you to put together simple full screen editors.

If Characterpos is omitted, Edit$ and Edit return to normal - editing always beginning
at character postition 0, and 'return' being the only way to exit.

EditExit
EditExit returns the ASCII value of the character that was used to exit a window based
Edit$ or Edit function. You can only exit the edit functions with keypresses other than
'return' if EditFrom has been executed prior to the edit call.

WindowFont IntuiFont#
WindowFont sets the font for the currently used window. Any further printing to this
window will be in the specified font. IntuiFont# specifies a previously initialized
intuifont object created using LoadFont.

WColour Foreground Colour[,Background Colour]
WColour sets the foreground and background colour of printed text for the currently
used window. Any further text printed on this window will be in these colours.

WJam Jammode
WJam sets the text drawing mode of the currently used window. These drawing modes
allow you to do inverted, complemented and other types of graphics.
The drawing modes can be OR'ed together to create a combination of them.

Jam1=0
This draws only the foreground colour and leaves the background transparent.
Eg For the letter 0, any empty space (inside and outside the letter) will be transparent.
Jam2=1
This draws both the foreground and background to the window. Eg With the letter 0
again, the 0 will be drawn, but any clear area (inside and outside) will be drawn in the
current background colour.

Complement=2
This will exlusive or (XOR) the bits of the graphics. Eg Drawing on the same
place with the same graphics will cause the original display to return.

Inversvid =4

170

This allows the display of inverse video characters. If used in conjunction with Jam2,
it behaves like Jam2, but the foreground and background colours are exchanged.

Activate Window#
Activate will activate the window specified by Window#.

Menus On l Off
The Menus command may be used to turn ALL menus either on or off. Turning
menus off may be useful if you wish to read the right mouse button.

WPointer Shape#
WPointer allows you to determine the mouse pointer imagery used in the currently used
window. Shape# specifies an initialized shape object the pointer is to take it's
appearance from, and must be of 2 bitplanes depth (4 colours).

WMove X,Y
WMove will move the current window to screen position X,Y.

WSize Width,Height
WSize will alter the width and height of the current window to the values specified by
Width and Height.

WMouseX
WMouseX returns the horizontal x coordinate of the mouse relative to the left edge of
the current window. If the current window was opened without the GIMMEZEROZERO
flag set, then the left edge is taken as the left edge of the border around the window,
otherwise, if GIMMEZEROZERO was set, then the left edge is the taken from inside the
window border.

WMouseY
WMouseY returns the vertical y coordinate of the mouse relative to the top of the
current window. If the current window was opened without the GIMMEZEROZERO flag
set, then the top is taken as the top of the border around the window, otherwise, if
GIMMEZEROZERO was set, then the top is taken trom inside the window border.
EMouseX
EMouseX will return the horizontal position of the mouse pointer at the time the most
recent window event occured. Window events are detected using the WaitEvent or
Event commands.

EMouseY
EMouseY returns vertical position of the mouse pointer at the time the most recent
window event occured. Window events are detected using the WaitEvent or Event.

WCursX

171

WCursX returns the horizontal location of the text cursor of the currently
used window. The text cursor position may be set using WLocate.

WCursY
WCursY returns the vertical location of the text cursor of the currently
used window. The text cursor position may be set using WLocate.

WLocate X, Y
WLocate is used to set the text cursor position within the currently used window. X and
Y are both specified in pixels as offsets from the top left of the window. Each window
has it's own text cursor position, therefore changing the text cursor position of one
window will not affect any other window's text cursor position.

WindowX
WindowX returns the horizontal pixel location of the top left corner of the
currently used window, relative to the screen the window appears in.

WindowY
WindowY returns the vertical pixel location of the top left corner of the
currently used window, relative to the screen the window appears in.

WindowWidth
WindowWidth returns the pixel width of the currently used window.

WindowHeight
WindowHeight returns the pixel height of the currently used window.

InnerWidth
InnerWidth returns the pixel width of the area inside the border of currently window.

InnerHeight
InnerHeight returns the pixel height of the area inside the border of currently window.

WTopOff
WTopOff returns the number of pixels between the top of the current window border
and the inside of the window.

WLeftOff
WLeftOff returns the number of pixels between the left edge of the current
window border and the inside of the window.

SizeLimits Min Width,Min Height,Max Width,Max Height
SizeLimits sets the limits that any new windows can be sized to with the Sizing gadget.

172

After calling this statement, any new windows will have these limits imposed on them.

RastPort (Window#)
RastPort returns the specified Window's RastPort address. Many commands in
the graphics.library and the like require a RastPort as a parameter.

PositionSuperBitMap x,y
PositionSuperBitMap is used to display a certain area of the bitmap in a super bitmap
window.

GetSuperBitMap
After rendering changes to a superbitmap window the bitmap attached can also be
updated with the GetSuperBitMap. After rendering changes to a bitmap the
superbitmap window can be refreshed with the PutSuperBitMap command. Both
commands work with the currently used window.

PutSuperBitMap
See GetSuperBitmap description.

WTitle windowtitle$,screentitle$
WTitle is used to alter both the current window's title bar and it's screens title bar.
Useful for displaying important stats such as program status etc.

CloseWindow Window#
CloseWindow has been added for convenience. Same as Free Window but a little more
intuitive (added for those that have complained about such matters).

WPrintScroll
WPrintScroll will scroll the current window upwards if the text cursor is below the
bottom of the window and adjust the cursor accordingly. Presently WPrintScroll only
works with windows opened with the gimme00 flag set (#gimmezerozero=$400).

WBlit Shape#,x,y
WBlit is used to blit any shape to the current window. Completely system friendly this
command will completely clip the shape to fit inside the visible part of the window Use
GimmeZeroZero windows for clean clipping when the window has title/sizing gadgets.

BitMaptoWindow Bitmap#,Window#[srox,srcy,destx,desty,width,height]
BitMaptoWindow will copy a bitmap to a window in an operating system friendly
manner (what do you expect). The main use of such a command is for programs which
use the raw bitmap commands such as the 2D and Blit libraries for rendering bitmaps
quickly but require a windowing environment for the user inyerface.

173

EventCode
EventQualifier
EventCode returns the actual code of the last Event received by your program,
EventQualifier returns the contents of the Qualifier field. Of use with the new GadTools
library and some other low level event handling requirements.

WindowTags Window#,Flags, Title$,[&TagList] I [[Tag,Data]...]
Similar to ScreenTags, WindowTags allows the advanced user to open a Blitz window
with a list of OS Tags as described in the documentation for the OS prior to 2.0.

LoadFont IntuiFont#,Fontname.font$, Y Size [,style]
LoadFont is used to load a font from the fonts: directory. Unlike BlitzFonts any size
IntuiFont can be used. The command WindowFont is used to set text output to a certain
IntuiFont in a particular Window.

The LoadFont command has been extended with an optional style parameter.
The following constants may be combined:

#underl ined= 1

#bold=2 #italic=4 #extended=8 ;wider than normal #colour=64 ;hmm use colour
version I suppose

R-24: GADGET COMMANDS

Blitz provides extensive support for the creation and use of Intuition gadgets. This is
done through the use of GadgetList objects. Each gadgetlist may contain one or more
of the many types of available gadgets, and may be attached to a window when that
window is opened using the Window command.

Following is a table of gadget flags and gadget types which they are relevant to:

Bit# Meaning Text String Prop Shape
0 Toggle On/Off yes no no yes
1 Relative to Right Side of Window yes yes yes yes
2 Relative to Bottom of Window yes yes yes yes
3 Size Relative to Width of Window no no yes no
4 Size Relative to Height of Window no no yes no
0 Box Select yes yes yes yes
6 Prop Gadget has Horizontal Movement no no yes no
7 Prop Gadget Has Vertical Movement no no yes no
8 No Border around Prop Gadget no no yes no
9 Mutually Exclusive yes yes no no
10 Attach to Window's Right Border yes yes yes yes

174

11 Attach to Window's Left Border yes yes yes yes
12 Attach to Window's Top Border yes yes yes yes
13 Attach to Window's Bottom Border yes yes yes yes
14 Use GimmeZeroZero Border yes yes yes yes

Note:
If Relative Right is set the gadgets X should be negative, as should it's Y if Relative to
Bottom is set. When relative Width or Height flags are set negative Width and/or Height
parameters should be specified as Intuition calculates actual witdh as
WindowWidth+GadgetWidth as it does height when relative size flags are set.

Mutually exclusive radio button type gadgets DO NOT require WorkBench 2.0 to
operate, see ButtonGroup for more information.

The attach flags are for attaching the gadget to one of the windows borders, the
GZZGADGET flag is for attaching the gadget to the "outer" rastport/ layer of a gimme
zero zero window.

Here is an example of setting up some radio button style text gadgets:

TextGadget 0,16,16,512,1,"0PTION 1":Toggle 0,1,on TextGadget
0,16,32,512,2,"OPTION 2" TextGadget 0,16,48,512,3,"OPTION 3"

Text Gadgets may now be used to create 'cycling' gadgets. Again, these gadgets
DO NOT require kickstart 2.0 to work.

A text gadget could contains the 'I' character in the gadget's text, Blitz will recognize
this as a 'cycling' gadget, using the 'I' character to separate the options - like this:

TextGadget 0 I 6 I 6,0 I ," HELLO I GOODBYE I SEEYA I "

Now, each time this gadget is clicked on, the gadgets text will cycle through 'HELLO',
'GOODBYE' and 'SEEYA'. Note that each option is spaced out to be of equal length.
This feature should not be used with a GadgetJam mode of 0.
TextGadget GadgetList#,X, Y, Flags, Id, Text$
The TextGadget command adds a text gadget to a gadgetlist. A text gadget is the
simplest type of gadget consisting of a sequence of characters optionally surrounded
by a border.

Flags should be selected from the table at the start of the chapter.

Boolean gadgets are the simplest type of gadget available. Boolean gadgets are 'off'
until the program user clicks on them with the mouse, which turns them 'on'. When the
mouse button is released, these gadgets revert back to their 'off' state. Boolean
gadgets are most often used for 'Ok' or 'CANCEL' type gadgets.

175

Toggle gadgets differ in that each time they are clicked on they change their state
between 'on' and 'off'. For example, clicking on a toggle gadget which is 'on' will
cause the gadget to be turned 'off, and vice versa.

X and Y specify where in the window the gadget is to appear. Depending upon the Flags
setting, gadgets may be positioned relative to any of the 4 window edges. If a gadget is
to be positioned relative to either the right or bottom edge of a window, the appropriate
X or Y parameter should be negative.

Id is an identification value to be attached to this gadget. All gadgets in a gadgetlist
should have unique Id numbers, allowing you to detect which gadget has been
selected. Id may be any positive, non-zero number.

Text$ is the actual text you want the gadget to contain.

ButtonGroup Group -
ButtonGroup allows you to determine which 'group' a number of button type gadgets
belong to. Following the execution of ButtonGroup, any button gadgets created will be
identified as belonging to the spiecified group. The upshot of all this is that button
gadgets are only mutually exclusive to other button gadgets within the same group.

'Group' must be a positive number greater than 0. Any button gadgets created
before a'ButtonGroup' command is executed will belong to group 1.

SetGadgetStatus GadgetList#,Id,Value
SetGadgetStatus is used to set a cycling text gadget to a particular value, once set
ReDraw should be used to refresh the gadget to reflect it's new value.

GadgetPens Foreground Colour[,Background Colour]
GadgetPens determines the text colours used when text gadgets are created using
the TextGadget command. The default values used for gadget colours are a foreground
colour of 1, and a background colour of 0.

GadgetJam Jammode
GadgetJam allows you to determine the text rendering method used when gadgets are
created using the TextGadget command. Please refer to the WJam command in the
windows chapter for a full description of jam modes available.

SelectMode mode
SelectMode is used to predefine how gadget rendering will show a gadget selection,
modes are 1 for box and 0 for inverse. Use prior to creation of gadgets.

ShapeGadget GadgetList#,X,Y,Flags,ld,Shape#[,Shape#]

176

ShapeGadget command allows to create gadgets with graphic imagery. Shape# refers
to a shape object containing the graphics you wish the gadget to contain.

ShapeGadget command has been extended to allow an alternative image to be
displayed when the gadget is selected.

All other parameters are identical to those in TextGadget.

StringGadget GadgetList#,X, Y,Flags,ld,Maxlen, Width
StringGadget allows to create an Intuition style 'text entry' gadget. When clicked on, a
string gadget brings up a text cursor, and is ready to accept text entry trom keyboard.

X and Y specifies the gadgets, position, relative to the top left of the window it is to
appear in. See the beginning of the chapter for the relevant Flags tor a string gadget.

Id is an identification value to be attached to this gadget. All gadgets in a gadgetlist
should have unique Id numbers, allowing you to detect which gadgets has been
selected. Id may be any positive, non-zero number.

Maxlen refers to the maximum number of characters which may appear in this gadgets.

Width refers to how wide, in pixels, the gadget should be. A string gadget may have a
width less than the maximum number of characters it may contain, as characters will
be scrolled through the gadget when necessary.

You may read the current contents of a string gadget using the StringText function.

StringText$ (GadgetList#,ld)
Stringtext$ function allows you to determine the current contents of a string gadget.
StringText$ will return a string of characters representing the string gadgets contents.

ActivateString Window#,ld
ActivateString may be used to 'automatically' activate a string gadget. This is identical
to the program user having clicked in the string gadget themselves, as the string
gadget's cursor will appear, and further keystrokes will be sent to the string gadget.

It is often nice of a program to activate Important string gadgets, as it saves the user
the hassle of having to reach t'or the mouse before the keyboard.

ResetString GadgetList#,ld
ResetString allows you to 'reset' a string gadget. This will cause the string gadget's
cursor position to be set to the leftmost position.

ClearString GadgetList#,ld

177

ClearString may be used to clear, or erase, the text in the specified string gadget. The
cursor position will also be moved to the leftmost position in the string gadget.

If a string gadget is cleared while it is displayed in a window, the text will not be
erased from the actual display. To do this, ReDraw must be executed.

SetString GadgetList#, ID, String$
SetString may be used to initialize the contents of a string gadget created with the
StringGadget command. If the string gadget specified by GadgetList# and id is already
displayed, you will also need to execute ReDraw to display the change.

PropGadget GadgetList#,X, Y,Flags,ld, Width,Height
The PropGadget command is used to create a 'proportional gadget'. Proportional
gadgets present a program user with a 'slider bar', allowing them to adjust the slider
to achieve a desired effect. Proportional gadgets are commonly used for the 'R G B'
sliders seen in many paint packages.

Proportional gadgets have 2 main qualities - a 'pot' (short for potentiometer) setting,
and a'body' setting.

The pot setting refers to the current position of the slider bar, and is in the range 0
through 1. For example, a proportional gadget which has been moved to 'half way'
would have a pot setting of '.5'.

The body setting refers to the size of the units the proportional gadget represents, and
is again in the range 0 through 1. Again taking the RGB colour sliders as an example,
each slider is intended to show a particular value in the range 0 through 15 - giving a
unit size, or body setting, of 1/16 or '.0625'.

Put simply, the pot setting describes 'where' the slider bar is, while the body setting
describes 'how big' it is.

Proportional gadgets may be represented as either horizontal slider bars,
vertical slider bars, or a combination of both.
See the beginning of the chapter for relevant Flags settings for prop gadgets.

X and Y refer to the gadgets position, relative to top left of the window it is opened in.
Width and Height refer to the size of the area the slider should be allowed to move in.

Id is a unique, non zero nr. which allows to identify when the gadget is manipulated.

Proportional gadgets may be altered using the SetVProp and SetHProp commands,
and read using the VPropPot, VPropBody, HPropPot and HPropBody functions.

SetHProp GadgetList#,ld,Pot,Body

178

SetHProp is used to alter the horizontal slider qualities of a proportional gadget.
Both Pot and Body should be in the range 0 through 1.

If SetHProp is executed while the specified gadget is already displayed, execution
of the ReDraw command will be necessary to display the changes.

For a full discussion on proportional gadgets, please refer to the PropGadget command.

SetVProp GadgetList#,ld,Pot, Body
SetVProp is used to alter the vertical slider qualities of a proportional gadget. Both Pot
and Body should be in the range 0 through 1.

If SetVProp is executed while the specified gadget is already displayed, execution of
the ReDraw command will be necessary to display the changes.

HPropPot (GadgetList#,ld)
The HPropPot function allows you to determine the current 'pot' setting of a
proportional gadget. HPropPot will return a number from 0 up to, but not including,
1, reflecting the gadgets current horizontal pot setting.

HPropBody (GadgetList#,ld)
The HPropBody function allows you to determine the current 'body' setting of a
proportional gadget. HPropBody will return a number from 0 up to, but not including,
1, reflecting the gadgets current horizontal body setting.

VPropPot (GadgetList#,ld)
The VPropPot function allows you to determine the current 'pot' setting of a
proportional gadget.

VPropPot will return a number from 0 up to, but not including, 1, reflecting
the gadgets current vertical pot setting.

VPropBody (GadgetList#,ld)
The VPropBody function allows you to determine the current 'body' setting of a
proportional gadget.

VPropBody will return a number from 0 up to, but not including, 1, reflecting the
gadgets current vertical body setting.

Redraw Window#,id
ReDraw will redisplay the specified gadget in the specified window. This command
is mainly of use when a proportional gadget has been altered using SetHProp or
SetVProp and needs to be redrawn, or when a string gadget has been cleared using

179

ClearString, and, likewise, needs to be redrawn.

Borders [On I Off] I [Width, Height]
Borders serves 2 purposes. First, Borders may be used to turn on or off the automatic
creation of borders around text and string gadgets. Borders are created when either a
Textgadget or StringGadget command is executed. If you wish to disable this, Borders
Off should be executed before the appropriate TextGadget or StringGadget command.

Borders may also be used to specify the spacing between a gadget and it's border,
Width referring to the left/right spacing, and Height to the above/below spacing.

BorderPens Highlight Colour,Shadow Colour
BorderPens allows you to control the colours used when gadget borders are created.
Gadget borders may be created by the TextGadget, StringGadget and GadgetBorder.

HighLight Colour refers to the colour of the top and left edges of the border, while
Shadow Colour refers to the right and bottom edges.

The default value for HighLight Colour is 1. The default value for Shadow Colour is 2.

Gadget Border X, Y, Width, Height
The GadgetBorder command may be used to draw a rectangular border into the
currently used window.

Proportional gadgets and shape gadgets do not have borders automatically
created tor them. The GadgetBorder command may be used, once a window is
opened, to render borders around these gadgets.

X,Y, Width and Height refer to the position of the gadget a border is required around.
GadgetBorder will automatically insert sapces between the gadget and the border. The
Borders command may be used to alter the amount of spacing. Of course,
GadgetBorder may be used to draw a border around any arbitary area, regardless of
whether or not that area contains a gadget.

GadgetStatus (GadgetList#,ld)
GadgetStatus may be used to determine the status of the specified gadget. In the case
of toggle' type gadget, GadgetStatus will return true (-1) if the gadget is currently on,
or false (0) if the gadget is currently off.

In the case of a cycling text gadget, GadgetStatus will return a value of 1 or greater
representing the currently displayed text within the gadget.

ButtonId (GadgetList#,ButtonGroup)
ButtonId it´s used to determine which gadget within a group of button type gadgets
is currently selected. The value returned will be the GadgetId of the button gadget

180

currently selected.

Enable GadgetList#,ld
A gadget when disabled is covered by a "mesh" and can not be accessed by the user.
Commands Enable & Disable allow the programmer to access this feature of Intuition.

Disable GadgetList#,ld
A gadget when disabled is covered by a "mesh" and can not be accessed by the user.
Commands Enable & Disable allow the programmer to access this feature of Intuition.

Toggle GadgetList#,ld [,On I Off]
The Toggle command in the gadget library has been extended so it will actually toggle
a gadgets status if the On I Off parameter is missing.

R-25: MENU COMMANDS

Blitz supports many commands for the creation and use of Intuition menus.

Menus are created through the use of MenuList objects. Each menulist contains an
entire set of menu titles, menu items and possibly sub menu items.
Menulists are attached to windows through the SetMenu command.

Each window may use a separate menulist, allowing you to attach relevant menus to
different windows.

MenuTitle Menulist#,Menu,Title
MenuTitle is used to add a menu title to a menulist. Menu titles appear when the right
mouse button is held down, and usually have menuitems attached to them.

Menu specifies which menu the title should be used for. Higher numbered menus
appear further to the right along the menu bar, with 0 being the leftmost menu.
Menutitles should be added in left to right order, with menu 0 being the first created,
then 1 and so on...
Title$ is the actual text you want to appear when the right mouse button is pressed.

Menultem MenuList#, Flags, Menu,ltem,ltemtext$[, Shortcut$]
Menultem is used to create a text menu item. Menu items appear vertically below menu
titles when mouse is moved over a menu title with the right mouse button held down.

Flags affects operation of menu item. A value of 0 creates a stand 'select' menu item.

A value of 1 creates a 'toggle' menu item. Toggle menu items are used for 'on/off' type
options. When a toggle menu item is selected, it will change state between on and off.
An 'on' toggle item is identified by a 'tick' or check mark.

181

A value of 2 creates a special type of toggle menu item. Any menu items which appear
under the same menu with a Flags setting of 2 are said to be mutually exclusive. This
means that only 1 of them may begin the 'on' state at one time. If a menu item of this
nature is toggled into the 'on' state, any other mutually exclusive menu items which
may have previously been 'on' will be automatically turned 'off'.

Flags values of 3 and 4 correspond to values 1 and 2, only the item will initially appear
in the 'on' state.

Menu specifies the menu title under which the menu item should appear.

Item specifies the menu item number, this menu item should be referenced as. Higher
numbered items appear further down a menu item list, with 0 being topmost item. Menu
items should be added in 'top down' order, with item 0 being the first item created.

Itemtext$ is the actual text for the menu item.

An optional Shortcut$ string allows you to select a one character 'keyboard shortcut'
for the menu item.

Shapeltem MenuList#, Flags,Menu, Item, Shape#
ShapeItem is used to create a graphical menu item.

Shape# refers to a previously initialized shape object to be used as the menu item's
graphics. All other parameters are identical to those for MenuItem.

Subitem MenuList#,Flags,Menu,ltem,Subitem,Subitem text$[,Shortcut$]

All menu items may have an optional list of sub menu items attached to them.
To attach a sub menu item to a menu item, you use the SubItem command.

Item specifies the menu item to attach the sub item to.

Subitem refers to the number of the sub menu item to attach. Higher numbered
sub items appear further down a sub item list, with 0 being the topmost sub item.
Sub items should be added in 'top down' order, with sub item 0 being created first.

. Subitemtext$ specifies the actual text for the sub item. As with menu items, sub
items may have an optional keyboard shortcut, specified using Shortcut$ parameter.

All other parameters are identical to the MenuItem command.

ShapeSub MenuList#,Flags,Menu,ltem,Subitem,Shape#
ShapeSub allows you to create a graphic sub menu item. Shape# specifies a previously

182

created shape object to be used as the sub item's graphics.

All other parameters are identical to those in SubItem.

SetMenu MenuList#
SetMenu is used to attach a menulist to the currently used window. Each window may
have only one menulist attached to it.

MenuGap X Gap, Y Gap
Executing MenuGap before creating any menu titles, items or sub items, allows you to
control the layout of the menu.

X Gap refers to an amount, specified in pixles, to be inserted to the left and right of all
menu items and sub menu items. Y Gap refers to an amount, again in pixels, to be
inserted above and below all menu items and sub menu items.

SubitemOff X Offset, Y Offset
SubItemOff allows you to control the relative position of the top of a list of sub menu
items, in relation to their associated menu item.

Whenver a menu item is created which is to have sub menu items, it's a good idea to
append the name of the menu item with the '>>' character. This may be done using
Chr$(187). This gives the user a visual indication that more options are available. To
position the sub menu items correctly so that they appear after the '>>' character,
SubItemOff should be used.

MenuState MenuList#[Menu[, Item[, Subitem]]], On l Off
The MenuState command allows you to turn menus, or sections of menus, on or off.

MenuState with just MenuList# parameter it´s used to turn an entire menu list on or off.

MenuState with MenuList# and Menu parameters may be used to turn a menu on or off.

Similarly, menu items and sub items may be turned on or off by specifying the
appropriate parameters.

MenuColour Colour
MenuColour allows to determine what colour any menu item or sub item text is
rendered in. MenuColour should be executed before appropriate menu item commands.

MenuChecked (MenuList#, Menu,ltem[, Subitem]
The MenuChecked function allows you to tell whether or not a 'toggle' type menu item
or menu sub item is currently 'checked' or ton'. If the specified menu item or sub item
is in fact checked, MenuChecked will return 'true' (-1). If not, MenuChecked will return

183

'false' (0).

R-26: GADTOOLS COMMANDS

GadTools are a new system of Gadgets added to the Amiga's OS in version 2.0. They
are improved in both looks and performance over the older standard Gadgets.

In order for certain GadTools gadgets to tunction correctly the first thing to make sure
is that the Window has the correct IDCMP flags set:

#MOUSEMOVE=$10 ;needed when user drags a slider
#INTUITICKS=$400000 ;needed
when user holds down an arrow AddIDCMP#MOWSEMOVE+#INTUITICKS

To add GadTools Gadgets to the window simply create a list from the commands
listed below and use the AttachGTList command to add them to the window.

For most GTGadgets your program should only act on a #GadgetUp message. The
GadgetHit function will return the ID of the gadget the user has just hit and the
EventCode function will contain it's new value.

Use GTGetString and GTGetInteger functions to read the contents of the GadTools
string gadgets after a #GadgetUp message.

GTadgetFlag Value
#_LEFT = 1 ;position of text label
#_RIGHT = 2
#_ABOVE = 4
#_BELOW = 8
#_IN = $10
#_Highlight = $20 ;gadget is highlighted initially
#_Disable = $40 ;gadget is disabled initially
#_Immediate = $X0 ;report GadgetDown flag
BoolValue = $100 ;gadget is on initially
#_Scaled = $200 ;scale arrowsize on scroller gadget
Vertical = $400 ;make GTPropGadget vertical

GTButton GTList#, id,x,y, w,h, Text$, flags
Same as Blitz's TextGadget but with the added flexibility of placing the label Text$
above, below to the left or right of the button (see flags).

GTCheckBox GTList#,id,x,y, w,h, Text$, flags
A box with a check mark that toggles on and off, best used for options that are either
enabled or disabled.

184

GTCycle GTList#,id,x,y, w,h, Text$, flags, Options$
Used for offering the user a range of options, the options string should be a list
of options separated by the l character ea. "HIRES l LORES l SUPER HIRES "

GTlnteger GTList#,id,x,y, w,h, Text$, flags, default
A string gadget that allows only numbers to be entered by the user.See GTSetInteger
and GTGetInteger for information about accessing the contents of a GTInteger gadget.

GTListView GTList#,id,x,y,w,h, Text$, flags, list0
ListView gadget enables user to scroll through a list of options. These options must be
contained in a string field of a Blitz linked list. Currently this string field must be the
2nd field, the first being a word type. See the GTChangeList command for more details.

GTMX GTList#,id,x,y,w,h, Text$, flags, Options$
GTMX is an exclusive selection gadget, the Options$ is the same as GTCycle in format,
GadTools then displays all the options in a vertical list each with a hi-light beside them.

GTNumber GTList#,id,x,y,w,h, Text$, flags, value
This is a readonly gadget (user cannot interact with it) used to display numbers. See
GTSetInteger to update the contents of this read only "display" gadget.

GTPalette GTList#,id,x,y,w,h, Text$, flags, depth
Creates a number of coloured boxes relating to a colour palette,

GTScroller GTList#,id,x,y,w,h, Text$, flags, Visible, Total
A prop type gadget for the user to control an amount or level, is accompanied by a set
of arrow gadgets

GTSlider GTList#,id,x,y,w,h, Text$, flags, Min, Max
Same as Scroller but for controlling the position of the display inside a larger view.

GTString GTList#,id,x,y,w,h, Text$, flags, MaxChars
A standard string type gadget. See GTSetString and GTGetString for accessing the
contents of a GTString gadget.

GTText GTList#,id,x,y,w,h, Text$, flags, Display$
A read only gadget (see GTNumber) for displaying text messages. See
GTSetString for updating the contents of this read only "display" gadget.

GTShape GTList#,id,x,y, flags, Shape#[, Shape#]
Similar to the Blitz ShapeGadget allowing IFF graphics that are loaded into

185

Blitz shape objects to be used as gadgets in a window.

AttachGTList GTList#, Window#
The AttachGTList command is used to attach a set of GadTools gadgets to a Window
after it has been opened.

GTTags Tag, Value 1,Tag, Value...]
The GTTags command can be used prior to initialization of any of the 12 gadtools
gadgets to preset any relevant Tag fields. The following are some useful Tags that
can be used with GTTags:

#tag=$80080000
#GTCB Checked=#tag+4 ; State of checkbox
#GTLV_Top=#tag+5 ; Top visible item in listview
#GTLV_ReadOnly=#tag+7 ; Set TRUE if lisiview is ReadOnly
#GTMX_Active=#tag+10 ; Active one in mx gadget
#GTTX_Text=#tag+11 ; Text to display
#GTNM_Number=#tag+ 13 ; Number to display
#GTCY_Active=#tag+ 15 ; The active one in the cycle gad
#GTPA_Color=#tag+ 17 ; Palette color
#GTPA ColorOffset=#tag+18 ; First color to use in palette
#GTSC_Top=#tag+21 ; Top visible in scroller
#GTSC_Total=#tag+22 ; Total in scroller area
#GTSC_Visible=#tag+23 ; Number visible in scroller
#GTSL_Level=#tag+40 ; Slider level
#GTSL_MaxLevelLen=#tag+41 ; Max length of printed level
#GTSL_LevelFormat=#tag+42 ;* Format string for level
#GTSL_LevelPlace=#tag+43 ;* Where level should be placed
#GTLV_Selected=#tag+54 ; Set ordinal number of selected
#GTMX_Spacing=#tag+61 ;* Added to font height

All of the above except for those marked * can be set after initialization of the Gadget
using the GTSetAttrs command.

The following is an example of creating a slider gadget with a numeric display:

f$="%21d "GTTags#GTSLLevelFormat,&f$,#GTSLMaxLevelLen,4GTSlider
2,10,320,120,200,20,"GTSLIDER",2,0,10

GTGadPtr (GTList#,id)
GTGadPtr returns the actual location of the specified GadTools gadget in memory.

GTBevelBox GTList#,x,y,w,h,flags
GTBevelBox is the GadTools library equivalent of the Borders command and can be
used to render frames and boxes in the currently used Window.

186

GTChangeList GTList#,id [,List()]
GTChangeList must be used whenever a List attached to a GTListView needs to be
modified. Call GTChangeList without the List() parameter to free the List, modify it then
reattach it with another call to GTChangeList this time using the List() parameter.

GTSetAttrs GTList#,id [, Tag, Value...]
GTSetAttrs can be used to modify the status of certain GadTools gadgets with the
relevant Tags. See GTTags for more information.

GTSetString GTList#,id,string$
Used with both GTString and GTText gadgets, GTSetString will not only update the
contents of the gadget but redraw it also.

GTSetinteger GTList#,id,value
Used with both GTInteger and GTNumber gadgets, GTSetInteger will not only update
the contents of the gadget but redraw it also.

GTGetString GTList#,id
Used to read the contents from a GTString gadget.

GTGetinteger GTList#,id
Used to read the contents from a GTlnteger gadget.

GTGetAttrs (GTList#,id,Tag)
A 3.0 specific command. See C= documentation for more information.

GTEnable GTList#,ld
Allows GTGadgets to be enabled and disabled.

GTDisable GTList#,ld
Allows GTGadgets to be enabled and disabled.
GTToggle GTList#,ld[,On l Off]
GTToggle allows the programmer to set Boolean gadgets such as GTButton and
GTCheckbox to a desired state.

GTStatus (GTList#,ld)
GTStatus returns the status of the gadtools toggle gadgets, a value of 1 means the the
gadget is selected, 0 deselected.

R-27: ASL LIBRARY COMMANDS

The ASL Library features several friendly requesters that programs can use on

187

machines equipped with WorkBench 2.0 and above.

ASLFileRequest$ (Title$,Pathname$,Filename$ tPattern$] [,x,y, w,h])
The ASL File Requester is nice. Except for the highlight bar being invisible on
directories you get to use keyboard for everything, stick in a pattern$ to hide certain
files and of course you get what ever size you want. 1 made it call the Blitz file
requester if the program is running under 1.3 (isn't that nice!). There is a fix that
patches the ReqTools file requester but that doesn't have the date field.

I couldn't get the Save-Only tag or the "Create Directory" option working maybe next
upgrade.

ASLPathRequest$ (Title$,Pathname$ [,x,y,w,h])
Same as ASLFileRequest$ except will just prompt the user for a path name (directory)
rather than an actual file.

ASLFontRequest (enable flags)
The ASL Font Requester is also pretty useful. The flags parameter enables the user to
modify the following options:

#pen=1 :#bckgrnd=2:#style=4:#drawmode=8:#fixsize=16

It doesn't seem to handle colour fonts, no keyboard shortcuts so perhaps patching
ReqTools is an option for this one. The following code illustrates how a .fontinfo
structure is created by a call to ASLFontRequest (just like in high level language man!).

ASLScreenRequest (enable flags)
Those who are just getting to grips with 2.0 and above will find this command makes
your programs look really good, however I haven't got time to explain the difficulties of
developing programs that work in all screen resolutions (what are ya?).

NEWTYPE .fontinfo
name.s
ysize.w
style.b:flags.b
pen1.b:pen2:drawmode:pad
End NEWTYPE

FindScreen 0

*f.fontinfo=ASLFontRequest(15)

If *f

188

NPrint *f\name
NPrint *f\ysize
NPrint *f\penl
NPrint *f\pen2
NPrint *f\drawmode

Else
NPrint "cancelled"

Endif
MouseWait

R-28: AREXX CONTROL COMMANDS

ARexx allows communication between different Amiga applications allowing for
some extensive and powerful control over applications by the programmer.

CreateMsgPort ("Name")
CreateMsgPort is a general Function and not specific to ARexx.

CreateMsgPort opens an intuition PUBLIC message port of the name supplied as the
only argument. If all is well the address of the port created will be returned to you as a
LONGWORD so the variable that you assign it to should be of type long.

If you do not supply a name then a private MsgPort will be opened for you.
Port. 1=CreateMsgPort(" PortName")

It is important that you check you actually succeeded in opening a port in
your program. The following code or something similar will suffice.

Port. 1=CreateMsgPort("Name") IF Port=0 THEN Error_Routine{ }

The name you give your port will be the name that Arexx looks for as the HOST
address,(and is case sensitive) so take this into consideration when you open your
port. NOTE IT MUST BE A UNIQUE NAME AND SHOULD NOT INCLUDE SPACES.
DeleteMsgPort() is used to remove the port later but this is not entirely necessary as
Blitz will clean up for you on exit if need be.

DeleteMsgPort (Port)
DeleteMsgPort deletes a MessagePort previously allocated with CreateMsgPort(). The
only argument taken by DeleteMsgPort is the address returned by CreateMsgPort(). If
the Port was a public port then it will be removed from the public port list.

Port. 1=CreateMsgPort("Name") IF Port=0 Then End DeleteMsgPort Port

Error checking is not critical as if this fails we have SERIOUS PROBLEMS.

189

YOU MUST WAIT FOR ALL MESSAGES FROM AREXX TO BE RECEIVED BEFORE YOU
DELETE THE MSGPORT.IF YOU NEGLECT TO DELETE A MSGPORT BLITZ2 WILL DO IT
FOR YOU AUTOMATICALLY ON PROGRAM EXIT.

CreateRexxMsg (ReplyPort,"exten' "HOST")
CreateRexxMsg() allocates a special Message structure used to communicate with
Arexx. If all is successful it returns the LONGWORD address of this rexxmsg structure.

The arguments are ReplyPort which is the long address returned by CreateMsgPort().
This is the Port that ARexx will reply to after it has finished with the message.

EXTEN which is the exten name used by any ARexx script you are wishing to run. i.e. if
you are attempting to run the ARexx script test.rexx you would use an EXTEN of "rexx"

HOST is the name string of the HOST port. Your program is usually the HOST and so
this equates to the name you gave your port in CreateMsgPort().
REMEMBER IT IS CASE SENSITIVE.

As we are allocating resources error checking is important and can be achieved with
the following code:

msg.l=CreateRexxMsg(Port, "rexx","HostName") IF msg=0 THEN Error_Routine{ }
DeleteRexxMag rexxmsg

DeleteRexxMsg simply deletes a RexxMsg Structure previously allocated by
CreateRexxMsg(). It takes a single argument which is the long address of a
RexxMsg structure such as returned by CreateRexxMsg().

msg.l=CreateRexxMsg(Port, "rexx ","HostName") IF msg=0 THEN Error Routine(}
DeleteRexxMsg msg

Again if you neglect to delete the RexxMsg structure Blitz will do this for you on exit of
the program.
ClearRexxMsg Arexxmsg
ClearRexxMsg is used to delete and clear an ArgString from one or more of the
Argument slots in a RexxMsg Structure. This is most useful for the more advanced
programmer wishing to take advantage of the Arexx #RXFUNC abilities.

The arguments are a LONGWORD address of a RexxMsg structure. ClearRexxMsg
will always work from slot number 1 forward to 16.

FillRexxMsg (rexxmsg,&FillStruct)
FillRexxMsg allows you to fill all 16 ARGSlots if necessary with either ArgStrings or
numerical values depending on your requirement. FillRexxMsg will only be used by
those programmers wishing to do more advanced things with Arexx, including adding

190

libraries to the ARexx library list, adding Hosts,Value Tokens etc. It is also needed to
access Arexx using the #RXFUNC flag. The arguments are a LONG Pointer to a
rexxmsg. The LONG address of a FillStruct NEWTYPE structure. This structure is
defined in the Arexx.res and has the following form.

NEWTYPE .FillStruct

Flags.w ;Flag block
Args0.l ; argument block (ARG0-ARG15)
Args1.l ; argument block (ARG0-ARG15)
Args2.l ; argument block (ARG0-ARG15)
Args3.l ; argument block (ARG0-ARG15)
Args4.l ; argument block (ARG0-ARG15)
Args5.l ; argument block (ARG0-ARG15)
Args6.l , argument block (ARG0-ARG15)
Args7.l , argument block (ARG0-ARG15)
Args8.l ; argument block (ARG0-ARG15)
Args9.l ; argument block (ARG0-ARG15)
Args10.l ; argument block (ARG0-ARG15)
Args11.l ; argument block (ARG0-ARG15)
Args12.l ; argument block (ARG0-ARG15)
Args13.l ; argument block (ARG0-ARG15)
Args14.l ; argument block (ARG0-ARG15)
Args15.l ; argument block (ARG0-ARG15)
EndMark.l ; End of the FillStruct

End NEWTYPE

The Args?.l are the 16 slots that can possibly be filled ready for converting into the
RexxMsg structure. The Flags.w is a WORD value representing the type of LONG word
you are supplying for each ARGSLOT (Arg?.l).

Each bit in the Flags WORD is representative of a single Args?.l, where a set bit
represents a numerical value to be passed and a clear bit represents a string argument
to be converted into a ArgString before installing in the RexxMsg. The Flags Value is
easiest to supply as a binary number to make the bits visible and would look like this.

%0000000000000000 ;represents that all Arguments are Strings.
%0110000000000000 ;represent second&third as being integers.

FillRexxMsg expects to find the address of any strings in the Args?.l slots so it is
important to remember when filling a FillStruct that you must pass the string address
and not the name of the string. This is accomplished using the '&' address of operand.

So to use FillRexxMsg we must do the following things in our program:

1. Allocate a FillStruct 2. Set the flags in the FillStruct\Flags.w

191

3. Fill the FillStruct with either integer values or the addresses of our string arguments.

4. Call FillRexxMsg with the LONG address of our rexxmsg and the LONG address of our
 FillStruct.

To accomplish this takes the following code:

;Allocate our FillStruct (called F)
DEFTYPE.FillStruct F
;assign some string arguments
T$="open " :T1$="-0123456789"
;Fill in our FillStruct with flags and (&) addresses of our strings
F\Flags= %0010000000000000,&T$,&T1$,4
;Third argument here is an integer (4).
Port.l=CreateMsgPort("host")
msg.l=CreateRexxMsg(Port,"vc","host")
FillRexxMsg msg,&F
;<-3 ergs see #RXFUNC
SendRexxCommand msg,"",#RXFUNCI #RXFF RESULTI 3

CreateArgString ("this is a string")
CreateArgString() builds an ARexx compatible ArgString structure around the provided
string. All strings sent to, or received from Arexx are in the form of ArgStrings. See
the TYPE RexxARG.

If all is well the return will be a LONG address of the ArgString structure. The pointer
will actually point to the NULL terminated String with the remainder of the structure
available at negative offsets.

DeleteArgString ArgString
DeleteArgString is designed to Delete ArgStrings allocated by either Blitz or ARexx in a
system friendly way. It takes only one argument the LONGWORD address of an
ArgString as returned by CreateArgString().

SendRexxCommand rexxmsg, "commands/ring ",#RXCOMMI #RXFF RESULT

SendRexxCommand is designed to fill and send a RexxMsg structure to ARexx inorder
to get ARexx to do something on your behalf. The arguments are as follows;

rexxmsg: the LONGWORD address of a RexxMsg structure as returned by
CreateRexxMsg().

commands/ring: the command string you wish to send to ARexx. This is a string as in
"this is a string" and will vary depending on what you wish to do with ARexx. Normally

192

this will be the name of an ARexx script file you wish to execute. ARexx will then look
for the script by the name as well as the name with the exten added.(this is the exten
you used when you created the RexxMsg structure using CreateRexxMsg()). This could
also be a string file. That is a complete ARexx script in a single line.

ActionCodes: the flag values you use to tell ARexx what you want it to do with the
commandstring you have supplied.

COMMAND (ACTION) CODES

The command codes that are currently implemented in the resident process are
described below. Commands are listed by their mnemonic codes,followed by the valid
modifier flags. The final code value is always the logical OR of the code value and all of
the modifier flags selected. The command code is installed in the rm_Action field of
the message packet.

RXADDCON:
This code specifies an entry to be added to the Clip List. Parameter slot ARG0 points
to the name string,slot ARG1 points to the value string,and slot ARG2 contains the
length of the value string.

The name and value arguments do not need to be argstrings,but can be just pointers to
storage areas. The name should be a null-terminated string,but the value can contain
arbitrary data including nulls.

RXADDFH:
This action code specifies a function host to be added to the Library List. Parameter
slot ARG0 points to the (null-terminated) host name string, and slot ARG1 holds the
search priority for the node. The search priority should be an integer between 100 and
-100 inclusive, the remaining priority ranges are reserved for future extensions. If a
node already exists with the same name, the packet is returned with a warning level
error code.
Note that no test is made at this time as to whether the host port exists.

RXADDLIB:
This code specifies an entry to be added to the Library List. Parameter slot ARG0
points to a null-terminated name string referring either to a function library or a
function host. Slot ARG1 is the priority for the node andshould be an integer between
100 and -100 inclusive;the remaining priority ranges are reserved for future extensions.
Slot ARG2 contains the entry Point offset and slot ARG3 is the library version number.
If a node already exists with the same name,the packet is returned with a warning
level error code. Otherwise,a new entry is added and the library or host becomes
available to ARexx programs. Note that no test is made at this time as to whether the
library exists and can be opened.

193

RXCOMM [RXFF_TOKEN] [RXFF STRING] [RXFF_RESULT] [RXFF N010]
Specifies a command-mode invocation of an ARexx program. Parameter slot ARG0 must
contain an argstring Pointer to the command string. The RXFB TOKEN flag specifies
that the command line is to be tokenized before being passed to the invoked program.
The RXFB_STRING flag bit indicates that the command string is a "string file."
Command invocations do not normally return result strings,but the RXFB_RESULT flag
can be set if the caller is prepared to handle the cleanup associated with a returned
string. The RXFB_N010 modifier suppresses the inheritance of the host's input and
output streams.

RXFUNC [RXFF_RESULT] [RXFF STRING] [RXFF_N010] argcount
This command code specifies a function invoction. Parameter slot ARG0 contains a
pointer to the function name string,and slots ARG1 through ARG15 point to the
argument strings,all of which must be passed as argstrings. The lower byte of the
command code is the argument count, this count excludes the function name string
itself. Function calls normally set the RXFB_RESULT flag,but this is not mandatory. The
RXFB_STRING modifier indicates that the function name string is actually a "string
file". The RXFB_N010 modifier suppresses the inheritance of the host's input and
output streams.

RXREMCON: This code requests that an entry be removed from the Clip List. Parameter
slot ARG0 points to the null-terminated name to be removed. The Clip List is searched
for a node matching the supplied name, and if a match is tound the list node is removed
and recycled. If no match is found the packet is returned with a warning error code.

RXREMLIB: This command removes a Library List entry. Parameter slot ARG0 points to
the null terminated string specifying the library to be removed. The Library List is
searched for a node matching the library name,and if a match is found the node is
removed and released. If no match is found the packet is returned with a warning error
code. The libary node will not be removed if the library is currently being used by an
ARexx program.

RXTCCLS:
This code requests that the global tracing console be closed. The console window will
be closed immediately unless one or more ARexx programs are waiting for input from
the console. In this event,the window will be closed as soon as the active programs are
no longer using it.

RXTCOPN:
This command requests that the global tracing console be opened. Once the console is
open,all active ARexx programs will divert their tracing output to the console. Tracing
input (for interactive debugging)will also be diverted to the new console. Only one
console can be opened;subsequent RXTCOPN requests will be returned with a warning
error message.

194

MODIFIER FLAGS
Command codes may include modifier flags to select various processing options.
Modifier flags are specific to certain commands,and are ignored otherwise.

RXFF_N010:
This modifier is used with the RXCOMM and RXFUNC command codes to suppress
the automatic inheritance of the host's input and output streams.

RXFF NONRET:
Specifies that the message packet is to be recycled by the resident process rather
than being returned to the sender. This implies that the sender doesn't care about
whether the requested action succeeded,since the returned packet provides the only
means of acknowledgement. (RXFF_NONRET MUST NOT BE USED AT ANY TIME)

RXFF RESULT:
This modifer is valid with the RXCOMM and RXFUNC commands, and requests that the
called program return a result string. If the program EXITs(or RETURNs)with an
expression,the expression result is returned to the caller as an argstring. This
ArgString then becomes the callers responsibility to release. This is automatically
accomplished by using GetResultString(). It is therefore imperitive that if you use
RXFF_RESULT then you must use GetResultString() when the message packet is
returned to you or you will incure a memory loss equal to the size of the ArgString
Structure.

RXFF_STRING:
This modifer is valid with the RXCOMM and RXFUNC command codes. It indicates that
command or function argument (in slot ARG0) is a "string file" rather than a file name.

RXFF_TOKEN:
This flag is used with the RXCOMM code to request that the command string be
completely tokenized before being passed to the invoked program. Programs invoked as
commands normally have only a single argument string. The tokenization process uses
"white space" to separate the tokens,except within quoted strings. Quoted strings can
use either single or double quotes,and the end of the command string
(a null character) is considered as an implicit closing quote.

ReplyRexxMsg ReplyRexxMsg rexxmsg, Result1, Result2, "ResultString "
When ARexx sends you a RexxMsg (Other than a reply to yours i.e. sending yours back
to you with results) you must repl to the message before ARexx will continue or free
that memory associated with that RexxMsg. ReplyRexxMsg accomplishes this for you.
ReplyRexxMsg also will only reply to message that requires a reply so you do not have
to include message checking routines in your source simply call ReplyRexxMsg on
every message you receive wether it is a command or not.

195

The arguments are:

rexxmsg is the LONGWORD address of the RexxMsg Arexx sent you as returned by
GetMsg_(Port).

Result1 is 0 or a severity value if there was an error.

Result2 is 0 or an Arexx error number if there was an error processing the command
that was contained in the message.

ResultString is the result string to be sent back to Arexx. This will only be sent if Arexx
requested one and Resultl and 2 are 0.

ReplyRexxMsg rexxmsg,0,0,"THE RETURNED MESSAGE"

GetRexxResult() Result1=GetRexxResult(rexxmsg,ResultNum)

GetRexxResult extracts either of the two result numbers from the RexxMsg structure.
Care must be taken with this Function to ascertain wether you are dealing with error
codes or a ResultString address. Basically if result 1 is zero then result 2 will either be
zero or contain a ArgString pointer to the ResultString. This should then be obtained
using GetResultString().

The arguments to GetRexxResult are:
rexxmsg is the LONGWORD address of a RexxMsg structure returned from ARexx.
ResultNum is either 1 or 2 depending on wether you wish to check result 1 or result 2.

GetRexxCommand (rexxmsg,ARGnum)

GetRexxCommand allows you access to all 16 ArgString slots in the given RexxMsg.
Slot 1 contains the command string sent by ARexx in a command message so this
allows you to extract the Command.
The arguments are:

rexxmsg is a LONGWORD address of the RexxMsg structure as returned by RexxEvent()

AFGNum is an integer from 1 to 16 specifying the ArgString Slot you wish to get an
ArgString from.

YOU MUST KNOW THAT THERE IS AN ARGSTRING THERE.

GetResultString (rexxmag)
GetResultString allows you to extract the result string returned to you by ARexx after it
has completed the action you requested. ARexx will only send back a result string if
you asked for one (using the ActionCodes) and the requested action was successful.

196

Wait
Wait halts all program execution until an event occurs that the program is interested in.
Any intuition event such as clicking on a gadget in a window will start program
execution again.

A message arriving at a MsgPort will also start program execution again. So you may
use Wait to wait for input from any source including messages from ARexx to your
program.

Wait should always be paired with EVENT if you need to consider intuition events in
your event handler loop.

RexxEvent (Port)
RexxEvent is our Arexx Equivalent of EVENT(). It's purpose is to check the given Port to
see if there is a message waiting there for us.

It should be called atter a WAIT and will either return a NULL to us if there was no
message or the LONG address of a RexxMsg Structure if there was a message waiting.

Multiple Arexx MsgPorts can be handled using separate calls to RexxEvent():
Wait:Rmsg1.l=RexxEvent(Port1):Rmsg2.l=RexxEvent(Port2):etc

RexxEvent also takes care of automatically clearing the rexxmsg if it is our message
being returned to us.

The argument is the LONG address of a MsgPort as returned by CreateMsgPort().

IsRexxMsg (rexxmsg)
IsRexxMsg tests the argument (a LONGWORD pointer hopefully to a message packet)
to see if it is a RexxMsg Packet. If it is TRUE is returned (1) or FALSE if it is not (0).

As the test is non destructive and extensive passing a NULL value or a LONGWORD
that does not point to a Message structure (Intuition or Arexx) will return as FALSE.

RexxError() ErrorString$=RexxError(ErrorCode)
RexxError converts a numerical error code such as you would get from GetRexxResult
(msg2) into an understandable string error message. If the ErrorCode is not known to
ARexx a string stating so is returned ensuring that this function will always succeed.

R-29: BREXX COMMANDS

The Blitz BRexx commands allow you to take control of certain aspects of Intuition.
Through BRexx, your programs can 'fool' Intuition into thinking that the mouse has
been played with, or the keyboard has been used. This is ideal for giving the ability to

197

perform 'macros' - where one keystroke can set off a chain of pre-defined events.

The BRexx commands support tape objects. These are predefined sequences of events
which may be played back at any time. The convenient Record command can be used
to easily create tapes. Using the MacroKey command, tapes may also be attached to
any keystroke to be played back instantly at the push of a button!

Please note that none of the BRexx commands are available in Blitz mode.

AbsMouse X,Y
AbsMouse allows you to position the mouse pointer at an absolute display location.
The X parameter specifies how far across the display the pointer is to be positioned,
while the Y parameter specifies how far down the display. X must be in the range zero
through 639. Y must be in the range zero through 399 for NTSC machines, or zero
through 511 for PAL machines.

RelMouse X Offset, Y Offset
RelMouse allows you to move the mouse pointer a relative distance from it's current
location. Positive offset parameters will move the pointer rightwards and downwards,
while negative offset parameters will move the pointer leftwards and upwards.

MouseButton Button,On l Off
MouseButton allows you to alter the status of the Amiga's left or right mouse buttons.
Button should be set to zero to alter the left mouse button, or one to alter the right
mouse button. On/Off refers to whether the mouse button should be pressed (On) or
released (Off).

ClickButton Button
ClickButton is identical to executing two MouseButton commands - one for pressing the
mouse button down, and one for releasing it. This can be used for such things as
gadget selection.
Type String$
Type causes Intution to behave exactly as if a certain series of keyboard characters
had been entered. These are normally sent to the currently active window.

Record [Tape#]
Record allows you to create a tape object. Tape objects are sequences of mouse
and/or keyboard events which may be played back at any time.

When a tape# parameter is supplied to the Record command, recording will begin. From
that point on, all mouse and keyboard activity will be recorded onto the specified tape.

The Record command with no parameters will cause any recording to finish.

198

PlayBack [Tape#]
PlayBack begins playback of a previously created tape object. When a Tape#
parameter is supplied, playback of the specified tape will commence. If no parameter
is supplied, any tape which may be in the process of being played back will finish.

Quickplay On l Off
QuickPlay will alter the way tapes are played using the PlayBack command. If
QuickPlay is enabled by use of an On parameter, then all PlayBack commands will
cause tapes to be played with no delays between actions. This means any pauses
which may be present in a tape (for instance, delays between mouse movements) will
be ignored when it is played back. QuickPlay Off will return PlayBack to it's default
mode of including all tape pauses. This is sometimes necessary when playing back
tapes which must at some point wait for disk access to finish before continuing.

PlayWait
PlayWait may be used to halt program flow until a PlayBack of a tape has finished.

XStatus
XStatus returns a value depending upon the current state of the BRexx system.
Possible return values and their meanings are as follows:

0 BRexx is currently inactive. No tapes are being recorded or played back.
1 BRexx is currently in the process of recording a tape.

This may be due to either the Record or TapeTrap commands.
2 BRexx is currently playing a tape back.

SaveTape Tape#,Filename$
SaveTape allows you to save a previously created tape object out to disk.
This tape may later be reloaded using LoadTape.

LoadTape Tape#,Filename$
LoadTape allows you to load a tape object previously saved with SaveTape for
use with the PlayBack command.

TapeTrap [Tape#]
TapeTrap allows you to record a sequence of AbsMouse, RelMouse, MouseButton
and ClickButton events to a tape object.

TapeTrap works similarly to Record, in that both commands are used to create a tape.
However, whereas Record receives information from the actual mouse and keyboard,
TapeTrap receives information from any AbsMouse, RelMouse, MouseButton and
ClickButton commands which may be executed. TapeTrap with no parameter will finish
tape creation.

199

QuietTrap On l Off
QuietTrap determines the way in which any TapeTrapping will be executed.

QuietTrap On will cause any AbsMouse, RelMouse, MouseButton and ClickButton
commands to be recorded to tape, but not to actually have any effect on the
porgram currently running.

QuietTrap Off will cause any AbsMouse, RelMouse, MouseButton and ClickButton
commands to be recorded to tape, AND to cause their usual effects. QuietTrap Off is
the default mode.

MacroKey Tape#,Rawkey,Qualifier
MacroKey causes a previously defined tape object to be attached to a particular
keyboard key. RawKey and Qualifier define the key the tape should be attached to.

FreeMacroKey Rawkey, Qualifier
FreeMacroKey causes a previously defined macro key to be removed so that a
BRexx tape is no longer attatched to it.

R-30: SERIAL PORT COMMANDS

The following are a set of commands to drive both the single RS232 serial port on an
Amiga as well as supporting multiserial port cards such as the A2232 card. The unit# in
the following commands should be set to 0 for the standard RS232 port, unit 1 refers to
the default serial port set by the advanced serial preferences program and unit 2 refer
to any extra serial ports available.

OpenSerial device$,unit#,baud,io_serfiags
OpenSerial is used to configure a Serial Port for use. As with OpenFile, OpenSerial is a
function and returns zero if it fails. If it succeeds advanced users may note the return
result is the location of the IOExtSer structure. The device$ should be "serial.device"
or compatible device driver. The baud rate should be in the range of 110-292,000. The
io_serflags parameter can include the following flags:

#serf_xdisabled= 128 ;disable xon/xoff
#serf_eofmode=64 ;enable eof checking
#serf_shared=32 ;set if you don't need exclusive use of port
#serf_rad_boogie= 16 ;high speed mode
#serf_queuedbrk=8 ;if set a break command waits for buffer empty
#serf_7wire=4 ;if set use 7 wire RS232
#serf_parity_odd=2 ;select odd parity (even if not set)
#serf_parity_on=1 ;enable parity checking

200

WriteSerial unit#,byte
WriteSerial sends one byte to the serial port. Unit# defines which serial port is used. If
you are sending characters use the Asc() function to convert the character to a byte
e.g. WriteSerial 0,asc("b").

WriteSerialString unit#,string
WriteSerialString is similar to WriteSerial but sends a complete string to the serial port.

ReadSerial (unit#)
ReadSerial returns the next byte waiting in the serial port's read buffer. If the buffer is
empty it returns a -1. It is best to use a word type (var.w=ReadSerial(0)) as a byte will
not be able to differentiate between -1 and 255.

ReadSerialString (unit#)
ReadSerialString puts the serial port's read buffer into a string, if the buffer is empty
the function will return a null string (length=0).

CloseSerial unit#
The CloseSerial command will close the port, enabling other programs to use it. Note:
Blitz will automatically close all ports that are opened when a program ends.

SetSerialBuffer unit#,bufferlength
SetSerialBuffer changes the size of the ports read buffer. This may be useful if your
program is not always handling serial port data or is receiving and processing large
chunks of data. The smallest size for the internal serial port (unit#0) is 64 bytes. The
bufferlength variable is in bytes.

SetSerialLens unit#, readlen, writelen,stopOits
SetSerialLens allows you to change the size of characters read and written by the
serial device. Generally readlen=writelen and should be set to either 7 or 8, stopbits
should be set to I or 2. Default values are 8,8,1.
SetSerialParams unit#
For advanced users, SetSerialParams tells the serial port when parameters are
changed. This would only be necesary if they were changed by poking offsets from
IOExtSer which is returned by the OpenSerial command.

SerialEvent (unit#)
SerialEvent is used when your program is handling events from more than 1 source,
Windows, ARexx etc. This command is currently not implemented

ReadSerialMem Unit#,Address,Length
ReadSerialMem will fill the given memory space with data from the given serial port.

201

WriteSerial Mem Unit#,Address, Length
WriteSerialMem sends out the given memory space out the given serial port.

APPENDIX 1: COMPILE TIME ERRORS

The following is a list of all the Blitz 2 compile time errors. Blitz 2 will print these
messages when unable to compile a line of your code and fails. The cursor will be
placed on the line with the offending error in most cases.

Sometimes the cause of the error will not be directly related to where Blitz 2 ceased
compiling. Any reference to an include file or a macro could mean the error is there and
not on the line referenced.

General Syntax Errors

Syntax Error: Check for typing mistakes and check your syntax with the reference
manual.

Garbage at End of Line: A syntax error of sorts. Causes are usually typos and missing
semi colons from the beginning of Remarks. Also a .type suffix when accessing
NewType items will generate this error.

Numeric Over Flow: The signed value is too large to fit in the variable space provided,
if you need bytes to hold 0..255 rather than -128..127 etc turn off Overflow checking in
the runtime errors section of the Options requester.

Bad Data: The values following the Data.type statement are not of the same type as
precedes the Data statement.

Procedure Related Errors

Not Enough Parameters: The command, statement or function needs more parameters.
Use the HELP key for correct number and meaning of parameters with Blitz]
[commands and check Statement and Function definitions in your code.

Duplicate parameter variable: Parmaters listed in statements and functions must be
unique.

Too many parameters: The statement or function was defined needing less
parameters than supplied by the calling routine.

Illegal Parameter Type: NewTypes cannot be passed to procedures.

202

Illegal Procedure return: The statement or function return is syntactically incorrect.

Illegal End Procedure: The statement or function end is syntactically incorrect.

Shared outside of Procedure: Shared variables are only applicable to procedures.

Variable already Shared: Shared variables must be unique in name.

Can't Nest Procedures: Procedures may NOT be defined within procedures, only
from the primary code.

Can't Dim Globals in Procedures: Global arrays may be only defined from the
pumary code.

Can't Goto/Gosub a Procedure: Goto and Gosub must always point to an
existing part of the primary code.

Duplicate Procedure name: A procedure (statement or function) of the same
name has been defined previously in the source.

Procedure not found: The statement or function has not previously been
defined in the source code.

Unterminated Procedure: The End Function or End Statement commands must
terminate a procedure definition.

Illegal Procedure Call: The statement or function call is syntactically incorrect.

Illegal Local Name: Not a valid variable name.

Constants Related Erros

Can't Assign Constant: Constant values can only be assigned to constants, no
variables please.

Constant not defined: A constant (such as #num) has been used in an
expression without first being defined

Constant already defined: Constants can only be defined once, i.e. cannot
change their value through the code.

Illegal Constant: Same as can't assign constant

203

Fractions Not allowed in Constants: Blitz 2 constants can only contain
absolute values, they are usually rounded and no error is generated.

Can't Use Constant: Caused by a clash in constant name definitions.

Constant Not Found: Constant has not been defined previously in the source code.

Illegal Constant Expression: A constant may only hold whole numbers, either a
decimal place, text or a variable name has been included in the constant definition.

Expression Evaluation Errors

Can't Assign Expression: The expression cannot be evaluated or the
evaluation has generated a value that is incompatible with the equate.

No Terminating Quote: Any text assigns should start and end with quotes.

Precedence Stack Overflow: You have attained an unprecedented level of
complexity in your expression and the Blitz 2 evaluation stack has
overflowed. A rare beast indeed!

Illegal Errors

Illegal Trap Vector: The 68000 has only 16 trap vectors.

Illegal Immediate Value: An immediate value must be a constant and must be
in range. See the 68000 appendix for immediate value ranges.

Iligeal Absolute: The Absolute location specified must be defined and in range.

Illegal Displacement: Displacement location specified must be defined and in range.

Illegal Assembler Instruction Size: The Intstruction size is not available,
refer to the 68000 appendix for relevant instruction sizes.

Illegal Assembler Addressing Mode: The addressing mode is not available for
that opcode, refer to the 68000 appendix for relevant addressing modes.

Library Based Errors

Illegal TokeJsr token number: Blitz 2 cannot find the library routine referred to by
the TokeJsr command, usually caused by the library not being included in DefLibs, not
present in the BlitzLibs: directory or the calculation being wrong (token number =
libnumber* 128 + token offset).

204

Library not Found: 'library number': Blitz2 cannot find the library routine referred to
by a Token, usually caused by the library not being'included in DeflLibs or the library
not present in the BlitzLibs: directories.

Token Not Found: 'token number': When loading source, Blitz 2 replaces any
unfound tokens with ?????, compiling your code with these unknown tokens present
will generate the above error.

Include Errors

Already Included: Same source code has already been included previously in the
code.

Can't open Include: Blitz 2 cannot find the include file, check the pathname.

Error Reading File: DOS has generated an error during an include.

Program Flow Based Errors

Illegal Else in While Block: See the reference section for the correct use of the Else
command with While..Wend blocks.

Until without Repeat: Repeat..Until is a block directive and both must be present.

Repeat Block too large: A Repeat..Until block is limited to 32000 bytes in length.

Repeat without Until: Repeat..Until is a block directive and both must be present.

If Block too Large: Blitz2 has a 32K limit for any blocks of code such as IF..ENDIF.

If Without End If: The IF statement has two forms, if the THEN statement is not
present then and END IF statment must be present to specify the end of the block.

Duplicate For...Next Error: The same variable has been used for a For..Next loop
that is nested within another For..Next loop.

Bad Type for For...Next: The For..Next variable must be of numeric type.

Next without For: For..Next is a block directive and both commands must be present.

For...Next Block to Long: Blitz2 restricts all blocks of code to 32K in size.

For Without Next: For..Next is a block directive and both commands must be present.

205

Type Based Errors

Can't Exchange different lopes: The Exchange command can only swap two
variables of the same type.

Can't Exchange NewTypes: Exchange command can´t handle NewTypes at present.

Type too Big: The unsigned value is too large to fit in the variable space provided.

Mismatched Types: Caused by mixing different types illegaly in an evaluation.

Type Mismatch: Same as Mismatched Types.

Can't Compare Types: Some Types are incompatible with operations such as
compares.

Can't Convert Types: The two Types are incompatible and one can not be
converted to the other.

Duplicate Offset (Entry) Error: The NewType has two entries of the same name.

Duplicated Type: A Type already exists with the same name.

End NewType without NewType: The NewType..End NewType is a block directive
and both must be present.

Type Not Found: No Type definition exists for the type referred to.

Illegal Type: Not a legal type for that function or statement.

Offset not Found: The offset has not been defined in the NewType definition.
Element isn't a pointer: The variable used is not a *var type and so cannot point
to another variable.

Illegal Operator for Type: The operator is not suited for the type used.

Too many comma's in Let: The NewType has less entries than the number of
values listed after the Let.

Can't use comma in Let: The variable you are assigning multiple values is either not
a NewType and cannot hold multiple values or the NewType has only one entry.

Illegal Function Type: A function may not return a NewType.

206

Conditional Compiling Errors

CNIF/CSIF without CEND: CNIF and CSIF are block directives and a CEND must
conclude the block.

CEND without CNIF/CSIF...: CNIF..CEND is a block directive and both commands
must be present.

Resident Based Errors

Clash in Residents: Residents being very unique animals, must not include the same
Macro and Constant definitions.

Can't Load Resident: Blitz2 cannot find the Resident file listed in the Options
requester. Check the pathname.

Macro Based Errors

Macro Buffer Overflow: The Options requester in the Blitz2 menu contains a
macro buffer size, increase if this error is ever reported. May also be caused by a
recursive macro call which generates endless code.

Macro already Defined: Another macro with the same name has already been
defined, may have been defined in one of the included resident files as well as
somewhere in the source code.

Can't create Macro inside Macro: Macro definitions must occur in the primary code.

Macro without End Macro: End Macro must end a Macro definition.

Macro too Big: Macro's are limited to the buffer sizes defined in the Options requester.

Macros Nested too Deep: Eight levels of macro nesting is available in Blitz2. Should
never happen ! !

Macro not Found: The macro has not been defined previous to the !macroname{ } call.

Array Errors

Illegal Array type: Should never happen.

Array not found: A variable name followed by parenthises has not been previously
defined as an array. Other possible mistakes may be the use of brackets instead of

207

curly brackets for macro and procedure calls, Blitz2 thinking instead you are referring
to an array name.

Array is not a List: A List function has been used on an array that was not
dimensioned as a List Array.

Illegal number of Dimensions: List arrays are limited to single dimensions.

Array already Dim'd: An array may not be re-dimensioned.

Can't Create Variable inside Dim: An undefined variable has been used for a
dimension parameter with the Dim statement.

Array not yet Dim'd: See Array not found.

Array not Dim'd: See Array not found.

Interrupt Based Errors

End SetInt without SetInt: Setlnt..End SetInt is a block directive and both
commands must be present.

SetInt without End SetInt: SetInt..End SetInt is a block directive and both
commands must be present.

Can't use SeVClrInt in Local Mode: Error handling can only be defined by the primary
code.

SetErr not allowed in Procedures: Error handling can only be defined by the primary
code.

Can't use SeVClrlat in Local Mode: Error handling can only be defined by the primary
code.

End Setlnt without SetInt: SetInt..End SetInt is a block directive and both commands
must be present.

Setlut without End SetInt: Setlnt..End SetInt is a block directive and both commands
must be present.

Illegally nested Interrupts: Interrupt handlers can obviously not be nested.

Can't nest SetErr: Interrupt handlers can obviously not be nested.

208

End SetErr without SetErr: SetErr..End SetErr is a block directive and both must be
present.

Illegal Interrupt Number: Amiga interrupts are limited from 0 to 13. These interrupts
are listed in the Amiga Hardware reference appendix.

Label Errors Label reference out of context: Should never happen

Label has been used as a Constant: Labels and constants cannot share same name.

Illegal Label Name: Refer to the Programming in Blitz2 chapter for correct variable
nomenclature.

Duplicate Label: A label has been defined twice in the same source code.
May also occur with macros where a label is not preceded by a \@.

Label not Found: The label has not been defined anywhere in the source code.
Can't Access Label: The label has not been defined in the source code.

Direct Mode Errors

Cont Option Disabled: The Enable Continue option in the Runtime errors of the
Options menu has been disabled.

Cont only Available in Direct Mode: Cont can not be called from your code
only from the direct mode window.

Library not Available in Direct Mode: Library is only available from within the code.

Illegal direct mode command: Direct mode is unable to execute command entered.

Direct Mode Buffer Overilow: The Options menu contains sizes of all buffers, if make
smallest code is in effect extra buffer memory will not be available for direct mode.

Can't Create in Direct Mode: Variables cannot be created using direct mode,
only ones defined by your code are available.

Select... End Select Errors

Select without End Select: Select is a block directive and an End Select must
conclude the block.

End Select without Select: Select..End Select is a block directive and both must be
present.

209

Default without Select: The Default command is only relevant to the Select..End
Select block directive.

Previous Case Block too Large: A Case section in a Select block is larger than 32K.

Case Without Select: The Case command is only relevant to the Select..End
Select block directive.

Blitz Mode Errors

Only Available in Blitz mode: The command is only available in Blitz mode, refer to
the reference section for Blitz/Amiga valid commands.

Only Available in Amiga mode: The command is only available in Amiga mode,
refer to the reference section for Blitz/Amiga valid commands.

Strange Beast Errors

Optimizer Error! - $': This should never happen. Please report.

Expression too Complex: Should never happen. Contact Mark directly.

Not Supported: Should never happen.

Illegal Token: Should never happen.

APPENDIX 2: OPERATING SYSTEM CALLS

BLITZLIBS:AMIGALIBS currently supports the EXEC, DOS, GRAPHICS INTUITION
and DISKFONT amiga libraries. Parameter details for each command are given
in brackets and are also available via the Blitz2 keyboard help system.

Each call may be treated as either a command or a function. Functions will always
return a long either containing true or false (signifying if the command was successful
or failed) or a value relevant to the routine.

The relative offsets from the library base and 68000 register parameters are included
for the convenience of the assembler programmer. When using library calls an
underscore character (_) should follow the token name.

An asterisk (*) precedinu routine names specifies that the calls are private and should
not be called trom Blitz2.

210

EXEC

-30 Supervisor(userFunction)(a5)
---- special patchable hooks to internal exec activity ---
-36 *execPrivate1()()
-42 *execPrivate2()()
-48 *execPrivate3()()
-54 *execPrivate4()()
-60 *execPrivate5()()
-66 *execPrivate6()()
--- module creation ---
-72 InitCode(startClass,version)(d0/d1)
-78 InitStruct(initTable,memory,size)(a1/a2,d0)
-84 MakeLibrary(funcl nit,structl nit,libl nit,dataSize,segList)(a0/a1/a2,d0/d 1)
-50 MakeFunctions(target,functionArray,funcDispBase)(a0/a1/a2)
-96 FindResident(name)(a1)
-102 InitResident(resident,segList)(a1,d1)
--- diagnoshcs ---
-108 Alert(alertNum)(d7)
-114 Debug(flags)(d0)
--- interrupts ---
-120 Disable()()
-126 Enable()()
-132 Forbid()()
-138 Permit()()
-144 SetSR(newSR,mask)(d0/d1)
-150 SuperState()()
-156 UserState(sysStack)(d0)
-162 SetlntVector(intNumber,interrupt)(d0/a1)
-168 AddlntServer(intNumber,interrupt)(d0/a1)
-174 RemintServer(intNumber,interrupt)(d0/a1)
-180 Cause(interrupt)(a1)
--- memory allocation ---
-186 Al locate (freeList,byteSize)(a0,dO)
-192 Deallocate(freeList,memoryBlock byteSize)(a0/a1,d0)
-198 AllocMem(byteSize,requirementsj(d0/d1)
-204 AllocAbs(byteSize,location)(d0/a1)
-210 FreeMem(memoryBlock,byteSize)(a1,d0)
-216 AvailMem(requirements)(d1)
-222 AllocEntr,v(entr,v)(a0)
-228 FreeEntry(entry)(a0)
--- lists ---
-234 Insert(list,node,pred)(a0/a1/a2)
-240 AddHead(list,node)(a0/a1)
-246 AddTail(list,node)(a0/a1)

211

-252 Remove(node)(a1)
-258 RemHead(list)(a0)
-264 RemTail(list)(a0)
-270 Enqueue(list,node)(a0/a1)
-276 FindName(list,name)(a0/a1)
--- tasks ---
-282 AddTask(task,initPC,finalPC)(a1/a2/a3)
-288 RemTask(task)(a1)
-294 FindTask(name)(a1)
-300 SetTaskPri(task,priority) (a 1,d0)
-306 SetSignal(newSignals,signalSet)(d0/d1)
-312 SetExcept(newSignals,signalSet)(d0/d1)
-318 Wait(signalSet)(d0)
-324 Signal(task,signalSet)(a1,d0)
-330 AllocSignal(signalNum)(d0)
-336 FreeSignal(signalNum)(d0)
-342 AllocTrap(trapNum)(d0)
-348 FreeTrap(trapNum)(d0)
--- messages ---
-354 AddPort(port)(a1)
-360 RemPort(port)(a1)
-366 PutMsg(port,message)(a0/a1)
-372 GetMsa(port)(a0)
-378 ReplyMsg(message)(a1)
-384 WaitPort(port)(a0)
-390 FindPort(name)(a1)
--- libraries ---
-396 AddLibrary(library)(a1)
-402 RemLibrary(library)(a1)
-408 OldOpenLibrary(libName)(a1)
-414 CloseLibrary(library)(a1)
-420 SetFunction(library,funcOffset,newFunction)(a1,a0,d0)
-426 SumLibrary(library)(a1)
--- devices ---
-432 AddDevice(device)(a1)
-438 RemDevice(device)(a1)
-444 OpenDevice(devName,unit,ioRequest,flags)(aO,dO/a1,d1)
-450 CloseDevice(ioRequest)(a1)
-456 DolO(ioRequest)(a1)
-462 SendlO(ioRequest)(a1)
-468 ChecklO(ioRequest)(a1)
-474 WaitlO(ioRequest)(a1)
-480 AbortlO(ioRequest)(a1)
--- resources---
-486 AddResource(resource)(a1)

212

-492 RemResource(resource)(a1)
-498 OpenResource(resName)(a1)
--- private diagnostic support ---
-504 *execPrivate7()()
-510 *execPrivate8()()
-516 *execPrivate9()()
--- misc ---
-522 RawDoFmt(formatString,dataStream,putChProc,putChData)(a0/a1/a2/a3)
-528 GetCC()()
-534 TypeOfMem(address)(a1)
-540 Procure(semaport,bidMsg)(a0/a1)
-546 Vacate(semaport)(a0)
-552 OpenLibrary(libName,version)(a1,d0)
*** functions in Release 1.2 or higher *^^
--- signal semaphores (note funny registers found in 1.2 or higher)---
-558 InitSemaphore(sigSem)(a0)
-564 ObtainSemaphore(sigSem)(a0)
-570 Release Se maphore (si gSem) (a0)
-576 AttemptSemaphore(siqSem)(a0)
-582 ObtainSemaphoreListtsigSem)(a0)
-588 ReleaseSemaphoreList(sigSem)(a0)
-594 FindSemaphore(sigSem)(a1)
-600 AddSemaphore(sigSem)(a1)
-606 RemSemaphore(sigSem)(al)
--- kickmem support ---
-612 SumKickData()()
--- more memory support---
-618 AddMemList(size,attributes,pri,base,name)(d0/d1/d2/a0/a1)
-624 CopyMem(source dest,size)(a0/a1d0)
-630 CopyMemQuick(source,dest,size)(a0/a1,d0)
*** functions in Release 2.0 or higher'''
--- cache ---
-636 CacheClearU()()
-642 CacheClearE(address,length,caches)(a0/d0/d1)
-648 CacheControl(cacheBits,cacheMask)(d0,d1)
--- misc ---
-654 CreatelORequest(port,size)(a0,d0)
-660 DeletelORequest(iorequest)(a0)
-666 CreateMsgPort()()
-672 DeleteMsgPort(port)(a0)
-678 ObtainSemaphoreShared(sigSem)(a0)
--- even more memory support ---
-684 AllocVec(byteSize,requirements)(d0/d1)
-690 FreeVec(memoryBlock)(a1)
-696 CreatePrivatePool(requirements,puddleSize,puddleThresh)(d0/d1/d2)

213

-702 Delete PrivatePool(poolHeader)(a0)
-708 AllocPooled(memSize,poolHeader)(d0/a0)
-714 FreePooled(memory,poolHeader)(a1,a0)
--- misc ---
-720 AttemptSemaphoreShared(sigSem)(a0)
-726 ColdReboot()()
-732 StackSwap(newStack)(a0)
--- task trees ---
-738 ChildFree(tid)(d0)
-744 ChildOrphan(tid)(d0)
-750 ChildStatus(tid)(d0)
-756 ChildWait(tid)(d0)
--- future expansion ---
-762 CachePreDMA(address,length,flags)(a0/a1,d1)
-768 CachePostDMA(address,length,flags)(a0/a1,d1)
-774 *execPrivate10()()
-780 *execPrivate11()()
-786 *execPrivate12()()
-792 *execPrivate13()()

DOS

-30 Open(name,accessMode)(d1/d2)
-36 Close(file)(d1)
-42 Read(file,buffer,length)(d1/d2/d3)
-48 Write(file,buffer,length)(d1/d2/d3)
-54 input()()
-60 Output()()
-66 Seek(file,position,offset)(d1/d2/d3)
-72 DeleteFile(name)(d1)
-78 Rename(oldName,newName)(d1/d2)
-84 Lock(name,type)(d1/d2)
-90 UnLock(lock)(d1)
-96 DupLock(lock)(d1)
-102 Examine(lock,filelnfoBlock)(d1/d2)
-108 ExNext(lock,filelnfoBlock)(d1/d2)
-114 Info(lock,parameterBlock)(d1/d2)
-120 CreateDir(name)(d1)
-126 CurrentDir(lock)(d1)
-132 loErr()()
-138 CreateProc(name,pri,segList,stackSize)(d1/d2/d3/d4)
-144 Exit(returnCode)(d1)
-150 LoadSeg(name)(d1)
-156 UnLoadSeg(seglist)(d1)
-162 *dosPrivatel ()()

214

-168 *dosPrivate2()()
-174 DeviceProc(name)(d1)
-180 SetComment(name,comment)(d1/d2)
-186 SetProtection(name,protect)(d1/d2)
-192 DateStamp(date)(d1)
-198 Delay(timeout)(d1)
-204 WaitForChar(file,timeout)(d1/d2)
-210 ParentDir(lock)(d1)
-216 Isinteractive(file)(d1)
-222 Execute(string,file,file2)(d1/d2/d3)
***functions in Release 2.0 or higher'''
---DOS Object creation/deletion---
-228 AllocDosObject(type,tags)(d1/d2)
-234 FreeDosObject(type,ptr)(d1/d2)
---Packet Level routines---
-240 DoPkt(port,action,arg1,arg2,arg3,arg4,arg5)(d1/d2/d3/d4/d5/d6/d7)
-246 SendPkt(dp,port,replyport)(d1/d2/d3)
-252 WaitPkt()()
-258 ReplyPkt(dp,res1res2)(d1/d2/d3)
-264 AbortPkt(port,pktj(d1/d2)
---Record Locking---
-270 LockRecord(fh,offset,length,mode,timeout)(d1/d2/d3/d4/d5)
-276 LockRecords(recArray,timeout)(d1/d2)
-282 UnLockRecord(fh,offset,length)(d1/d2/d3)
-288 UnLockRecords(recArray)(d1)
---Buffered File l/O---
-294 Selectlnput(fh)(d1)
-300 SelectOutput(fh)(d1)
-306 FGetC(fh)(d1)
-312 FPutC(fh,ch)(d1/d2)
-318 UnGetC(fh,character) (d 1 /d2)
-324 FRead(fh,block,blocklen,number)(d1/d2/d3/d4)
-330 FWrite(fh,block,blocklen,number)(d1/d2/d3/d4)
-336 FGets(fh,buf,buflen)(d1/d2/d3)
-342 FPuts(fh,str)(d1/d2)
-348 VFWritef(fh,format,argarray)(d1/d2/d3)
-354 VFPrinff(fh,format,argarray)(d1/d2/d3)
-360 Flush(fh)(d1)
-366 SetVBuf(fh,buff,type,size)(d1/d2/d3/d4)
---DOS Object Management---
-372 DupLockFromFH(fh)(d1)
-378 OpenFromLock(lock)(d1)
-384 ParentOfFH(fh)(d1)
-390 ExamineFH(fh,fib)(d1/d2)
-396 SetFileDate(name,date)(d1/d2)

215

-402 NameFromLock(lock,buffer,len)(d1/d2/d3)
-408 NameFromFH(fh,buffer,len)(d1/d2/d3)
-414 SplitName(name,seperatorbuf,oldpos,size)(d1/d2/d3/d4/d5)
-420 SameLock(lock1,lock2)(d1,d2)
-426 SetMode(fh,mode)(d1/d2)
-432 ExAll(lock,buffer,size,data,control)(d1/d2/d3/d4/d5)
-438 ReadLink(port,lock,path,buffer,size)(d1/d2/d3/d4/d5)
-444 MakeLink(name,dest,soft)(d1/d21d3)
-450 ChangeMode(type,fh,newmode)(d1/d2/d3)
-456 SetFileSize(fh,pos,mode)(d1/d2/d3)
---Error Handling---
-462 SetloErr(result)(d1)
-468 Fault(code,header,buffer,len)(d1/d21d3/d4)
-474 PrintFault(code,header)(d1/d2)
-480 ErrorReport(code,type,arg1,device)(d1/d2/d3/d4)
-486 RESERVED
---Process Management---
-492 Cli()()
-498 CreateNewProc(tags)(d1)
-504 RunCommand(seg,stack,paramptr,paramlen)(d1/d2/d3/d4)
-510 GetConsoleTask()()
-516 SetConsoleTask(task)(d1)
-522 GetFileSysTask()()
-528 SetFileSysTask(task)(d1)
-534 GetArgStr()()
-540 SetArgStr(string)(d1)
-546 FindCliProc(num)(d1)
-552 MaxCli()()
-558 SetCurrentDirName(name)(d1)
-564 GetCurrentDirName(buf,len)(d1/d2)
-570 SetProgramName(name)(d1)
-576 GetProgramName(buf,len)(d1/d2)
-582 SetPrompt(name)(d1)
-588 GetPrompt(buf,len)(d1/d2)
-594 SetProgramDir(lock)(d1)
-600 GetProgramDir()()
---Device List Management---
-606 SystemTaqList(command tags)(d1/d2)
-612 AssignLock(name,lock)(d1/d2)
-618 AssignLate(name,path)(d1/d2)
-624 AssignPath(name,path)(d1/d2)
-630 AssignAdd(name,lock)(d1/d2)
-636 RemAssignList(name,lock)(d1/d2)
-642 GetDeviceProc(name dp)(d1/d2)
-648 Free Device Proc(dp)(di)

216

-654 LockDosList(flags)(d1)
-660 UnLockDosList(flags)(d1)
-666 AttemptLockDosList(flags)(d1)
-672 RemDosEntry(dlist)(d1)
-678 AddDosEntry(dlist)(d1)
-684 FindDosEntry(dlist,name,flags)(d1/d2/d3)
-690 NextDosEntry(dlist,flags)(d1/d2)
-696 MakeDosEntry(name,type)(d1/d2)
-702 FreeDosEntry(dlist)(d1)
-708 IsFileSystem(name)(d1)
---Handler Interface---
-714 Format(filesystem,volumename,dostype)(d1/d2/d3)
-720 Relabel(drive,newname)(d1/d2)
-726 Inhibit(name onoff)(d1/d2)
-732 AddBuffers(name,number)(d1/d2)
---Date, Time Routines---
-738 CompareDates(date1,date2)(d1/d2)
-744 DateToStr(datetime)(d1)
-750 StrToDate(datetime)(d1)
---Image Management---
-756 InternalLoadSeg(fh,table,funcarray,stack)(d0/a0/a1/a2)
-762 InternalUnLoadSeg(seglist,freefunc)(d1/a1)
-768 NewLoadSeg(file,tags)(d1/d2)
-774 Add Segment(name,seg,system)(d1/d2/d3)
-780 FindSegment(name,seg,system)(d1/d2/d3)
-786 RemSegment(seg)(d1)
---Command Support----
-792 CheckSignal(mask)(d1)
-798 ReadArgs(template,array,args)(d1/d2/d3)
-804 FindArg(keyword,template)(d1/d2)
-810 Readltem(name,maxchars,cSource)(d1/d2/d3)
-816 StrToLong(string,value)(d1/d2)
-822 MatchFirst(pat,anchor)(d1/d2)
-828 MatchNext(anchor)(d1)
-834 MatchEnd(anchor)(d1)
-840 ParsePattern(pat,buf,buflen)(d1/d2/d3)
-846 MatchPattern(pat,str)(d1/d2)
-852 * Not currently implemented.
-858 FreeArgs(args)(d1)
-864'--- (1 function slot reserved here) ---
-870 FilePart(path)(d1)
-876 PathPart(path)(d1)
-882 AddPart(dirname,filename,size)(d1/d2/d3)
---Notification---
-888 StartNotify(notify)(d1)

217

-894 EndNotify(notify)(d1)
---Environment Variable functions---
-900 SetVar(name buffer,size,flags)(d1/d2/d3/d4)
-906 GetVar(name buffer,size,flags)(d1/d2/d3/d4)
-912 DeleteVar(name,flags)(d1/d2)
-918 FindVar(name,type)(d1/d2)
-924 *dosPrivate4()()
-930 ClilnitNewcli(dp)(a0)
-936 ClilnitRun(dp)(a0)
-942 WriteChars(buf,buflen)(d1/d2)
-948 PutStr(str)(d1)
-954 VPrinff(format,argarray)(d1/d2)
-960 *--- (1 function slot reserved here) ---
-966 ParsePatternNoCase(pat,buf,buflen)(d1/d2/d3)
-972 MatchPatternNoCase(pat,str)(d1/d2)
-978 dosPrivate5()()
-984 SameDevice(lock1,lock2)(d1/d2)

GRAPHICS

-30 BltBitMap(srcBitMap,xSrc,ySrc,destBitMap,xDest,yDest,xSizelySizelminterm
 ,mask,tempA)(a0,d0/d1/a1,d2/d3/d4/d5/d6/d7/a2)
-36 BltTemplate(source,xSrc,srcMod,destRP,xDest,yDest,xSizelySize)(a0,d0/d1
 /a1,d2/d3/d4/dS)
--- Text routnes ---
-42 ClearEOL(rp)(a1)
-48 ClearScreen(rp)(a1)
-54 TextLength(rp,string,count)(a1,a0,d0)
-60 Text(rp,string,count)(a1,a0,d0)
-66 SetFont(rp,textFont)(a1,a0)
-72 OpenFont(textAttr)(a0)
-78 CloseFont(textFont)(a1)
-84 AskSoflStyle(rp)(a1)
-90 SetSoffStyle(rp,style,enable)(a1,d0/d1)
--- Gels routnes ---
-96 AddBob(bob,rp)(a0/a1)
-102 AddVSprite(vSprite,rp)(a0/a1)
-108 DoCollision(rp)(a1)
-114 DrawGList(rp,vp)(a1,a0)
-120 InitGels(head,tail,gelsinfo)(a0/a1/a2)
-126 initMasks(vSprite)(a0)
-132 RemlBob(bob,rp,vp)(a0/a1/a2)
-138 RemVSprite(vSprite)(a0)
-144 SetCollision(num,routine,gelsinfo)(d0/a0/a1)
-150 SortGList(rp)(a1)

218

-156 AddAnimOb(anOb,anKey,rp)(a0/a1/a2)
-162 Animate(anKey,rp)(a0/a1)
-168 GetGBuffers(anOb,rp,flag)(a0/a1,d0)
-174 InitGMasks(anOb)(a0)
--- General graphics routines ---
-180 DrawEllipse(rp,xCenter,yCenter,a,b)(a1,d0/d1/d2/d3)
-186 AreaEllipse(rp,xCenter,yCenter,a,b)(a1,d0/d1/d2/d3)
-192 LoadRGB4(vp,colors,count)(a0/a1,d0)
-198 InitRastPort(rp)(a1)
-204 InitVPort(vp)(a0)
-210 MrgCop(view)(a1)
-216 MakeVPort(view,vp)(a0/a1)
-222 LoadView(view)(a1)
-228 WaitBlit()()
-234 SetRast(rp,pen)(a1,d0)
-240 Move(rp,x,y)(a1,d0/d1)
-246 Draw(rp,x,y)(a1,d0/d1)
-252 AreaMove(rp,x,y)(a1,d0/d1)
-258 AreaDraw(rp,x,y)(a1,d0/d1)
-264 AreaEnd(rp)(a1)
-270 WaitTOF()()
-276 QBlit(blit)(a1)
-282 InitArea(arealnfo,vectorBuffer,maxVectors)(a0/a1,d0)
-288 SetRGB4(vp,index,red,green,blue)(a0,d0/d1/d2/d3)
-294 QBSBlit(blit)(a1)
-300 BltClear(memBlock,byteCount,flags)(a1,d0/d1)
-306 RectFill(rp,xMin,yMin,xMax,yMax)(a1,d0/d1/d2/d3)
-312 BltPattern(rp,mask xMin,yMin,xMax,yMax,maskBPR)(a1,a0,d0/d1/d2/d3/d4)
-318 ReadPixel(rp,x,y)(a1,d0/d1)
-324 WritePixel(rp,x,y)(a1,d0/d1)
-330 Flood(rp,mode,x,y)(a1,d2,d0/d1)
-336 PolyDraw(rp,count,polyTable)(al,d0/a0)
-342 SetAPen(rp,pen)(al,d0)
-348 SetBPen(rp,pen)(a1,d0)
-354 SetDrMd(rp,drawMode)(a1,d0)
-360 InitView(view)(a1)
-366 CBump(copList)(a1)
-372 CMove(copList,destination,data)(a1,d0/d1)
-378 CWait(copList v,h)(a1,d0/d1)
-384 VBeamPos()()
-390 InitBitMap(bitMap,depth,width,height)(a0,d0/d1/d2)
-396 ScrollRaster(rp,dx,dy,xMin,yMin,xMax,yMax)(a1,d0/d1/d2/d3/d4/d5)
-402 WaitBOVP(vp)(a0)
-408 GetSprite(sprite,num)(a0,d0)
-414 FreeSprite(num)(d0)
-420 ChanueSprite(vp,sprite,newData)(a0/a1/a2)

219

-426 MoveSprite(vp,sprite,x,y)(a0/a1,d0/d1)
-432 LockLayerRom(layer)(a5)
-438 UnlockLayerRom(layer)(a5)
-444 SyncSBitMap(layer)(a0)
-450 CopySBitMap(layer)(a0)
-456 OwnBlitter()()
-462 DisownBlitter()()
-468 InitTmpRas(tmpRas,buffer,size)(a0/al,d0)
-474 AskFont(rp,textAttr)(a1,a0)
-480 AddFont(textFont)(a1)
-486 RemFont(textFont)(a1)
-492 AllocRaster(width,height) (d0/d1)
-498 FreeRaster(p,width,height)(a0,d0/d1)
-504 AndRectRegion(region,rectangle)(a0/a1)
-510 OrRectRegion(region,rectangle)(a0/a1)
-516 NewRegion()()
-522 ClearRectRegion(region,rectangle)(a0/a1)
-528 ClearRegion(region)(a0)
-534 DisposeRegion(region)(a0)
-540 FreeVPortCopLists(vp)(a0)
-546 FreeCopList(copList)(a0)
-552 ClipBlit(srcRP,xSrc,ySrc,destRP,xDest,yDest,xSizelySizelminterm)(a0,d0/d1/a1,d2
 /d3/d4/d5/d6)
-558 XorRectRegion(region,rectangle)(aO/a1)
-564 FreeCprList(cprList)(a0)
-570 GetColorMap(entries)(d0)
-576 FreeColorMap(colorMap)(a0)
-582 GetRGB4(colorMap,entry)(a0,d0)
-588 ScrollVPort(vp)(a0)
-594 UCopperListlnit(uCopList,n)(a0,d0)
-600 FreeGBuffers(anOb,rp,flag)(a0,a1,d0)
-606 BltBitMapRastPort(stcBM,x,y,destRP,x,y,Wld,Height,minterm)(a0,d0/d1/al,d2/d3
 /d4/d5/d6)
-612 OrRegionRegion(srcRegion,destRegion)(a0/a1)
-618 XorRegionRegion(srcRegion,destRegion)(a0/a1)
-624 AndRegionRegion(srcRegion,destRegion)(a0/a1)
-630 SetRGB4CM(colorMap,index,red,green,blue)(a0,d0/d1/d2/d3)
-636 BltMaskBitMapRastPort(srcBM,x,y,destRP,x,y,Wid,High,mterm,Mask)(a0,d0
 /d1/a1,d2/d3/d4/d5/d6/a2)
-642 RESERVED
-648 RESERVED
-654 AttemptLockLayerRom(layer)(a5)
*** functions in Release 2.0 or higher *-A
-660 GfxNew(gfxNodeType)(d0)
-666 GfxFree(gfxNodePtr)(a0)
-672 GfxAssociate(associateNode,gfxNodePtr)(a0/a1)

220

-678 BitMapScale(bitScaleArgs)(a0)
-684 ScalerDiv(factor,numerator,denominator)(d0/d1/d2)
-690 TextFit(rp,string,strLen,textExtent,constrainingExtent,strDirection
 ,constrainingBitWidth,constrainingBitHeight)(a1,a0,d0/a2)

INTUITION

-30 Openintuition()()
-36 Intuition(iEvent)(a0)
-42 AddGadget(window,gadget,position)(a0/a1,d0)
-48 ClearDMRequest(window)(a0)
-54 ClearMenuStrip(window)(a0)
-60 ClearPointer(window)(a0)
-66 CloseScreen(screen)(a0)
-72 CloseWindow(window)(a0)
-78 CloseWorkBench()()
-84 CurrentTime(seconds,micros)(a0/a1)
-90 DisplayAlert(alertNumber,string,height)(d0/a0,d1)
-96 DisplayBeep(screen)(a0)
-102 DoubleClick(sSeconds,sMicros,cSeconds,cMicros)(d0/d1/d2/d3)
-108 DrawBorder(rp,border,leftOffset,topOffset)(a0/a1,d0/d1)
-114 Drawlmage(rp,image,leftOffset topOffset)(a0/a1,d0/d1)
-120 EndRequest(requester,windowj(a0/a1)
-126 GetDefPrefs(preferences,size)(a0,d0)
-132 GetPrefs(preferences,size)(a0,d0)
-138 InitRequester(requester)(a0)
-144 ItemAddress(menuStrip,menuNumber)(a0,d0)
-150 ModifylDCMP(window,flags)(a0,d0)
-156 ModifyProp(gadget,window,requester,flags,horizPot,vertPot,horizBody
 ,vertBody)(a0/a1/a2,d0/d1 /d2/d3/d4)
-162 MoveScreen(screen,dx dy)(a0,d0/d1)
-168 MoveWindow(window,dx,dy)(a0,d0/d1)
-174 OffGadget(gadget,window,requester)(a0/a1/a2)
-180 OffMenu(window,menuNumber)(a0,d0)
-186 OnGadget(gadget,window,requester)(a0/a1/a2)
-192 OnMenu(window,menuNumber)(a0,d0)
-198 OpenScreen(newScreen)(a0)
-204 OpenWindow(newWindow)(a0)
-210 OpenWorkBench()()
-216 PrintlText(rp,iText,left,top)(a0/a1,d0/d1)
-222 RefreshGadgets(gadgets,window,requester)(a0/a1/a2)
-228 RemoveGadget(window,gadget)(a0/a1)
-234 ReportMouse(flag,window)(d0/a0)
-240 Request(requester,window)(a0/a1)
-246 ScreenToBack(screen)(a0)

221

-252 ScreenToFront(screen)(a0)
-258 SetDMRequest(window,requester)(a0/a1)
-264 SetMenuStrip(window,menu)(a0/a1)
-270 SetPointer(window,pointer,height,width,xOffset,yOffset)(a0/a1,d0/d1/d2/d3)
-276 SetWindowTitles(window,windowTitle,screenTitle)(a0/a1/a2)
-282 ShowTitle(screen,showlt)(a0,d0)
-288 SizeWindow(window,dx,dy)(a0,d0/d1)
-294 ViewAddress()()
-300 ViewPortAddress(window)(a0)
-306 WindowToBack(window)(a0)
-812 WindowToFront(window)(a0)
-318 WindowLimits(window,widthMin,heightMin,widthMax,heightMax)(a0,d0/d1/d2/d3)
-324 SetPrefs(preferences size,inform)(a0,d0/d1)
-330 IntuiTextLength(iText)(a0)
-336 WBenchToBack()()
-342 WBenchToFront()()
-348 AutoRequest(window,body,posText,negText,pFlag,nFlag,width,height)(a0/a1
 /a2/a3,d0/d1/d2/d3)
-354 BeginRefresh(window)(a0)
-360 BuildSysRequest(window,body,posText,negText,flags,width,height)(a0/a1
 /a2/a3,d0/d1/d2)
-366 EndRefresh(window,complete)(a0,d0)
-372 FreeSvsRequest(window)(a0)
-378 MakeScreen(screen)(a0)
-384 RemakeDisplay()()
-390 RethinkDisplay()()
-396 AllocRemember(rememberKey,size,flags)(a0,d0/d1)
-402 AlohaWorkbench(wbport)(a0)
-408 FreeRemember(rememberKey,reallyForget)(a0,d0)
-414 LocklBase(dontknow)(d0)
-420 UnlocklBase(ibLock)(a0)
*** functions in Release 1.2 or higher ***
-426 GetScreenData(buffer,size,type,screen)(a0,d0/d1/a1)
-432 RefreshGList(gadgets,window,requester,numGad)(a0/a1/a2,d0)
-438 AddGList(window,gadget,position,numGad,requester)(a0/a1,d0/d1/a2)
-444 RemoveGList(remPtr,gadget,numGad)(a0/a1,d0)
-450 ActivateWindow(window)(a0)
-456 RefreshWindowFrame(window)(a0)
-462 ActivateGadget(gadgets,window,requester)(a0/a1/a2)
-468 NewModifyProp(gadget,window,requester,flags,horizPot,vertPot,horizBody
 ,vertBody,numGad)(a0/a1/a2,d0/d1/d2/d3/d4/d5)
*** functions in Release 2.0 or higher *'*
-474 QueryOverscan(displaylD,rect,oScanType)(a0/a1,d0)
-480 MoveWindowlnFrontOf(window,behindWindow)(a0/a1)
-486 ChangeWindowBox(window,left,top,width,height)(a0,d0/d1/d2/d3)
-492 SetEditHook(hook)(a0)

222

-498 SetMouseQueue(window,queueLength)(a0,d0)
-504 ZipWindow(window)(a0)
--- public screens ---
-510 LockPubScreen(name)(a0)
-516 UnlockPubScreen(name,screen)(a0/a1)
-522 LockPubScreenList()()
-528 UnlockPubScreenList()()
-534 NextPubScreen(screen,namebuf)(a0/a1)
-540 SetDefaultPubScreen(name)(a0)
-546 SetPubScreenModes(modes)(d0)
-552 PubScreenStatus(screen,statusFlags)(a0,d0)
-558 ObtainGIRPort(ginfo)(a0)
-564 ReleaseGIRPort(rp)(a0)
-570 GadgetMouse(gadget,ginfo,mousePoint)(a0/a1/a2)
-576 *intuitionPrivatel()()
-582 GetDefaultPubScreen(nameBuffer)(a0)
-588 EasyRequestArgs(window,easyStruct,idcmpPtr,args)(a0/a1/a2/a3)
-594 BuildEasyRequestArgs(window,easyStruct,idcmpargs)(a0/al,d0/a3)
-600 SysReqHandler(window,idcmpPtr,waitinput)(a0/a1,d0)
-606 OpenWindowTaaList(newWindow,tagList)(a0/a1)
-612 OpenScreenTagtist(newScreen,tagList)(a0/a1)
---new Image functions---
-618 DrawimageState(rplimage,leftOffset,topOffset,state,drawinfo)(a0/a1,d0/d1/d2/a2)
-624 Pointinimage(point,image)(d0/a0)
-630 Eraselmage(rp,image,leftOffset,topOffset)(a0/a1,d0/d1)
-636 NewObjectA(classPtrclasslD,tagList)(a0/a1/a2)
-642 DisposeObject(objectj(a0)
-648 SetAttrsA(object,tagList)(a0/a1)
-654 GetAttr(attrlD,object,storagePtr)(d0/a0/a1)
---special set attribute call for gadgets---
-660 SetGadgetAttrsA(gadget,window, requester,tagList)(a0/a1/a2/a3)
-666 NextObject(objectPtrPtr)(a0)
-672 *intuitionPrivate2()()
-678 MakeClass(classlD,superClasslD,superClassPtr,instanceSize,flags)(a0/a1/a2,d0/d1)
-684 AddClass(classPtr)(a0)
-690 GetScreenDrawinfo(screen)(a0)
-696 FreeScreenDrawinfo(screen,drawinfo)(a0/a1)
-702 ResetMenuStrip(window menu)(a0/a1)
-708 RemoveClass(classPtr)(a0)
-714 FreeClass(classPtr)(a0)
-720 *intuitionPrivate3()()
-726 *intuitionPrivate4()()

DISKFONT

223

-30 OpenDiskFont(textAttr)(a0)
-36 AvailFonts(buffer,bufBytes,flags)(a0,d0/d1)
***functions in Release 1.2 or higher'''
-42 NewFontContents(fontsLock,fontName)(a0/a1)
-48 DisposeFontContents(fontContentsHeader)(a1)
*** functions in Release 2.0 or higher'''
-54 N ewScal ed Di sk Font(sou rce Font, destTe xtAttr) (a0/a1)

APPENDIX 3: AMIGA HARDWARE REGISTERS

The following are a list of memory locations where direct access to the Agnus, Denise
and Paula chips is possible.It is illegal to access any of these registers if you wish your
program to behave correctly in the Amiga environment. However in BlitzMode most of
these registers may be accessed taking into consideration the accompanying docs.

An * next to any description states that the option is available only with the new ECS
(Enhanced Chip Set). Also note that any reference to memory pointers MUST point
to chip rnem as the Amiga Chip Set is NOT capable of accessing FAST mem. This
includes BitPlane data, copper lists, Sprite Data, Sound DATA etc. etc.

BitPlane & Display Control

The Amiga has great flexibility in displaying graphics at different resolutions and
positions on the monitor. The hardware registers associated with the display are
nearly always loaded by the copper and not with the 68000 processor.

#BPLCON0= $100
#BPLCON1= $102
#BPLCON2= $104
#BPLCON3= $106 ;(ECS only)
#BPLCON4= $10c ;(AGA only)

BIT# BPLCONO BPLCON1 BPLCON2 BPLCON3 BPLCON4
15 HIRES PF2H3 COLBANK2 BPLAM7
14 BPU2 ZDBPSEL2 COLBANK1 BPLAM6
13 BPU1 ZDBPSEL1 COLBANK0 BPLAM5
12 BPU0 ZDBPSEL0 PF20F2 BPLAM4
11 HAM ZDPEN PF20F1 BPLAM3
10 DBLPF ZDCTEN PF20F0 BPLAM2
09 COLOR KILLEHB LOCT BPLAM1
08 GAUD RDRAM=0 BPLAM0
07 PF2H3 SOGEN SPRES1 ESPRM7
06 *SHRES PF2H2 PF2PRI SPRES0 ESPRM6
05 *BPLHWRM PF2H1 PF2P2 BRDRBLNK ESPRM5
04 *SPRHWRM PF2H0 PF2P1 BRDRTRAN ESPRM4

224

03 LPEN PF1H3 PF2PO OSPRM7
02 LACE PF1H2 PF1 P2 ZDCLCKEN OSPRM6
01 ERSY PF1H1 PF1 P1 BRDSPRT OSPRM5
00 PF1H0 PF1P0 EXTBLKEN OSPRM4

BPUn = number of bitplanes
PFnHn = playfield horizontal positioning
ZD... = genlock enable bits
PFnPn = Playfield priorities
COLBANKn = active color bank in AGA
PF20Fn = color offset for playfield 2 in dpf mode
LOCT = hi/lo nibble select for 24 bit color access
SPRESn = Sprite resolution
BRD... = Border settings
BPLAMx = xor mask for bitplane fetch
ESPRMn = color offset for even sprites

#BPL0PTH= $E0 ;BitPlane Pointer 0 High Word
#BPL0PTL= $E2 ;BitPlane Pointer 0 Low Word
#BPL1PTH= $E4
#BPL1PTL= $E6
#BPL2PTH= $E8
#BPL2PTL= $EA
#BPL3PTH= $EC
#BPL3PTL= $EE
#BPL4PTH= $F0
#BPL4PTL= $F2
#BPL5PTH= $F4
#BPL5PTL= $F6

Each pair of registers contain an 18 bit pointer to the address of BitPlanex data in
chip memory. They MUST be reset every frame usually by the copper.

#BPL1MOD=$108 ;BitplaneModulo for Odd Planes #BPL2MOD=$10A ;Bitplane
Modulo for EvenPlanes

At the end of each display line, the BPLxMODs are added to the the BitPLane
Pointers so they point to the address of the next line.

#DIWSTOP=$090 ; display window stop
#DIWSTRT=$08E ; display window start

These 2 registers control display window size and position. Following bits are assigned

BIT# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
 V7 V6 V5 V4 V3 V2 V1 V0 H7 H6 H5 H4 H3 H2 H1 H0

225

For DIWSTRT V8=0 & H8=0 restricting it to the upper lett of the screen.
For DIWSTOP V8=1 & H8=1 restricting it to the lower right of the screen.

#DDFSTOP= $094 ; data fetch stop
#DDFSTRT= $092 ; data fetch stant

The two display data fetch registers control when and how many words are fetched
from the bitplane for each line of display.

Typical values are as follows:

lores 320 pixels, DDFSTRT & DDFSTOP = $38 & $D0
hires 640 pixels, DDFSTRT & DDFSTOP = $3C & $d4

If smooth scrolling is enabled DDFSTRT should be 2 less than above.

#BPL1DAT $110 ; BitPlane Data parallel to serial converters
#BPL2DAT $112
#BPL3DAT $114
#BPL4DAT $116
#BPL5DAT $118
#BPL6DAT $11A
These 6 registers receive the DMA data fetched by the BitPlane engine, and output it
serially to the Amiga DACS, triggered by writing to BPLIDAT.
Not intended for programmer access.

The Copper

The Copper is found on the Agnus chip, it's main job is to 'poke' values
into the hardware registers in sync with the video beam. The main registers
it updates are BitPlane ptrs, Sprites and other control words that HAVE to
be reset every frame. It's also used to split the screen vertically as it
is capable of waiting for certain video beam positions before writing data.
Its also capable of waiting for the blister to finish as well as skipping
instructions if beam position is equal to certain values.

#COP1 LCH =$080
#COP1 LCL =$082

#COP2 LCH =$084
#COP2 LCL =$086

226

Each pair of registers contain an 18 bit pointer to the address of a Copper List in chip
mem. The Copper will automatically jump to the address in COP1 at the beginning of
the frame and is able to jump to COP2 if the following strobe is written to.

#COPJMP1 =$88
#COPJMP2 =$8A

When written to these addresses cause the copper to jump to the locations
held in COP I LC & COP2LC. The Copper can write to these registers itself
causing its own indirect jump.

#COPCON=$2E

By setting bit 1 of this register the copper is allowed to access the blister hardware.

The copper fetches two words for each instruction from its current copper list.
 The three instructions it can perform and their relevant bits are as follows:

Bit# MOVE WAIT UNTIL SKIP IF

15 x RD15 VP7 BFD VP7 BFD
14 x RD14 VP6 VE6 VP6 VE6
13 x RD13 VP5 VE5 VP5 VE5
12 x RD12 VP4 VE4 VP4 VE4
11 x RD11 VP3 VE3 VP3 VE3
10 x RD10 VP2 VE2 VP2 VE2
09 x RD09 VP1 VE1 VP1 VE1
08 DAB RD08 VP0 VE0 VP0 VE0
07 DA7 RD07 HP8 HE8 HP8 HE8
06 DA6 RD06 HP7 HE7 HP7 HE7
05 DA5 RD05 HP6 HE6 HP6 HE6
04 DA4 RD04 HP5 HE5 HP5 HE5
03 DA3 RD03 HP4 HE4 HP4 HE4
02 DA2 R D02 HP3 HE3 HP3 HE3
01 DA1 RD01 HP2 HE2 HP2 HE2
00 0 RD00 1 0 1 1

The MOVE instruction shifts the value held in RD15-0 to the destination address
calculated by $DFF000 +DA8-1.

The WAIT UNTIL instruction places the copper in a wait state until the video beam
position is past HP,VP (xy coordinates). The Copper first logical AIDS (masks) the
video beam with HE,VE before doing the comparison. If BFD is set then the
blister must also be finished before the copper will exit its wait state.

227

The SKIP IF instruction is similar to the WAIT UNTIL instruction but instead of placing
the copper in a wait state if the video beam position fails the comparison test it skips
the next MOVE instruction.

Colour Registers

The following 32 color registers can each represent one of 4096 colors.

#COLOR00= $180 #COLOR08= $190 #COLOR16= $1A0 #COLOR24= $1B0
#COLOR01= $182 #COLOR09= $192 #COLOR17= $1A2 #COLOR25= $1B2
#COLOR02= $184 #COLOR10= $194 #COLOR18= $1A4 #COLOR26= $1B4
#COLOR03= $186 #COLOR11= $196 #COLOR19= $1A6 #COLOR27= $1B6
#COLOR04= $188 #COLOR12= $198 #COLOR20= $1A8 #COLOR28= $1B8
#COLOR05= $18A #COLOR13= $19A #COLOR21= $1AA #COLOR29= $1BA
#COLOR06= $18C #COLOR14= $19C #COLOR22= $1AC #COLOR30= $1BC
#COLOR07= $18E #COLOR15= $19E #COLOR23= $1AE #COLOR31= $1BE

The bit usage for each of the 32 colors is:

BIT# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
 x x x x R3 R2 R1 R0 G3 G2 G1 G0 B3 B2 B1 B0

This represents a combination of 16 shades of red, green and blue.

glitter Control

The glitter is located on the Agnus, it's main function is to move blocks of data around
chip mem. It has 3 input channels A,B & C and 1 output channel D. A simple block move
would use 1 input channel and the 1 output channel, taking 4 clock ticks per cycle.
A complex move such as a moving a shape to a destination with a cookie cut would use
all 3 input channels and the output channel taking 8 clock ticks per cycle.

The main parameters of the blister include the width and height of the block to be
moved (width is in multiples of words), a start address for each channel, a modulo for
each channel that is added to their address at the end of each line so they point to the
next line, a logic function that specifies which input channels data will be sent to the
destination channel.
Follow is a table to work out logic tunction (known as minterm) for a blister operation:

A B C D
0 0 0 LF0
0 0 1 LF1
0 1 0 LF2
0 1 1 LF3
1 0 0 LF4

228

1 0 1 LF5
1 1 0 LF6
1 1 1 LF7

If the glitter is set up so that channel A points to the cookie, B points to the shape to
be copied and C&D point to the destination bitplane (such as how Blitz 2 uses the
blister) we would specify the following conditions:

When A is 1 then make D=B When A is 0 then make D=C

Using the above table we calculate the values of LF0-LF7 when these two conditions
are met. The top line has A=0 so LF0 becomes the value in the C column which is a 0.
A is 0 in the first 4 rows so LF0-LF3 all reflect the bits in the C column (0101) and
A=1 in the lower 4 rows so LF4-LF7 reflect the bits in the B column (0011).

This generates a minterm LF0-LF7 of % 10101100 or in hex $AC.
Note: Read values LF7 to LF0 from bottom to top to calculate the correct hex minterm.

#BLTAPTH= $50
#BLTAPTL= $52
#BLTBPTH= $4C
#BLTBPTL= $4E
#BLTCPTH= $48
#BLTCPTL= $4A
#BLTDPTH= $54
#BLTDPTL= $56

Each pair of registers contain an 18 bit pointer to the start address of the 4 blister
channels in chip mem.

#BLTAMOD= $64
#BLTBMOD= $62
#BLTCMOD= $60
#BLTDMOD= $66

The 4 modulo values are added to the blister pointers at the end of each line.

#BLTADAT= $74
#BLTBDAT= $72
#BLTCDAT= $70

If a blister channel is disabled the BLTxDAT register can be loaded with a
constant value which will remain unchanged during the blit operation.

#BLTAFWM= $44 ; glitter first word mask for source A
#BLTALWM= $46 ; glitter last word mask for source A

229

During a glitter operation these two registers are used to mask the contents of
BLTADAT for the first and last word of every line.

#BLTCON0= $40
#BLTCON1= $42

The following bits in BLTCON0 & BLTCON1 are as follows.

BIT# BLTCON0 BLTCON1

15 ASH3 BSH3
14 ASH2 BSH2
13 ASH1 BSH1
12 ASH0 BSH0
11 USEA x
10 USEB x
09 USEC x
08 USED x
07 LF7 x
06 LF6 x
05 LF5 x
04 LF4 EFE
03 LF3 IFE
02 LF2 FCI
01 LF1 DESC
00 LF0 0 (1=line mode)

ASH is the amount that source A is shifted (barrel rolled) USEX enables each of the 4
blitter channels LF holds logic function as discussed previously in this section BSH is
the amount that source B is shifted (barrel rolled) EFE is the Exclusive Fill Enable flag
IFE is the Inclusive Fill Enable flag FCI is the Fill Carry Input DESC is the descending
flag (blitter uses decreasing addressing) #BLTSIZE=$58 By writing the height and width
of the blit operation to BLTSIZE the blitter will start the operation. Maxiiiiutii size is
1024 high and 64 words (1024 bits) wide. Following defines bits in BLTZSIZE

BIT# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
 h9 h8 h7 h6 h5 h4 h3 h2 hl h0 w5 w4 w3 w2 wl w0
#BLTSIZV= $5C ;(ECS ONLY)
#BLTSIZH= $5E ;(ECS ONLY)

With the new ECS writing to BLTSIZV first and then BLTSZH the blitter can operate on
blocks as large as 32K x 32K pixels in size.

230

Blitter is also able to perform lined rawing and filled polygon functions. Details about
using blitter for these functions can be found on the examples dir of Blitz2.

Audio Control

The Amiga has 4 channels of 8 bit audio, each with their own memory access, period
and volume control. The following are a list of the applicable hardware registers.

#AUD0LCH= $A0
#AUD0LCL= $A2
#AUD1LCH= $B0
#AUD1LCL= $B2
#AUD2LCH= $C0
#AUD2LCL= $C2
#AUD3LCH= $D0
#AUD3LCL= $D2

#AUD0LEN= $A4
#AUD1LEN= $B4
#AUD2LEN= $C4
#AUD3LEN= $D4

#AUD0PER= $A6 ;period
#AUD1PER= $B6
#AUD2PER= $C6
#AUD3PER= $D6

#AUD0VOL= $A8
#AUD1VOL= $B8
#AUD2VOL= $C8
#AUD3VOL= $D8

#AUD0DAT= $AA
#AUD1DAT= $BA
#AUD2DAT= $CA
#AUD3DAT= $DA

Sprite Control

; pairs of 24 bit memory pointers to audio data in chip mem

;volume registers (0-63)

The Amiga hardware is capable of displaying eight 4 colour sprites or four 16 colour
sprites. Standard control of sprites is done by using the copper to setup the 8 sprite

231

pointers at the beginning of each frame.

#SPR0PTH= $120
#SPR0PTL= $122
#SPR1PTH= $124
#SPR1PTL= $126
#SPR2PTH= $128
#SPR2PTL= $12A
#SPR3PTH= $12C
#SPR3PTL= $12E
#SPR4PTH= $130
#SPR4PTL= $132
#SPR5PTH= $134
#SPR5PTL= $136
#SPR6PTH= $138
#SPR6PTL= $13A
#SPR7PTH= $13C
#SPR7PTL= $13E

;pairs of 24 bit memory pointers to sprite data in chip mem

Pointers should point to data that begins with 2 words containing SPRPOS & SPRCTL
values for that sprite, followed by its image data and with 2 null words that terminate
the data.

#SPR0POS= $140 #SPR0CTL= $142 #SPR0DATA= $144 #SPR0DATB= $146
#SPR1POS= $148 #SPR1CTL= $14A #SPR1DATA= $14C #SPR1DATB= $14E
#SPR2POS= $150 #SPR2CTL= $152 #SPR2DATA= $154 #SPR2DATB= $156
#SPR3POS= $158 #SPR3CTL= $15A #SPR3DATA= $15C #SPR3DATB= $15E
#SPR4POS= $160 #SPR4CTL= $162 #SPR4DATA= $164 #SPR4DATB= $166
#SPR5POS= $168 #SPR5CTL= $16A #SPR5DATA= $16C #SPR5DATB= $16E
#SPR6POS= $170 #SPR6CTL= $172 #SPR6DATA= $174 #SPR6DATB= $176
#SPR7POS= $178 #SPR7CTL= $17A #SPR7DATA= $17C #SPR7DATB= $17E

Using standard sprite DMA the above registers are all loaded from sprite data pointed
to in chip mem by the sprite pointers. These registers are only of interest to 'multiplex'
sprites by using copper to load these registers rather than sprite DMA.

The following is bit definitions of both SPRPOS and SPRCTL.

BiT# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
POS SV7 SV6 SV5 SV4 SV3 SV2 SV1 SV0 SH8 SH7 SH6 SH5 SH4 SH3 SH2 SH1
CTL EV7 EV6 EV5 EV4 EV3 EV2 EV1 EV0 ATT X X X X SV8 EV8 SH0

SV is the vertical start position of the sprite SH is the horizontal position of the sprite
(calulated in lores pixels only) EV is the end vertical position ATT is the sprite

232

attached bit (connects odd sprites to their predecessors)

Interupt Control

#INTENA =$9A ;interupt enable write address
#INTENAR =$1C ;interupt enable read address

#INTREQ = $9C ;interupt request write address
#INTREQR =$1E ;interupt request read address

INTENA is used to enable or disable interupts. If the value written to INTENA has bit
15 set any other of the bits enable their corresponding interupts. If bit 15 is clear any
of the other bits set will disable their corresponding interupts.

INTENAR will return which interupts are currently enabled.

INTREQ is used to initiate or clear an interupt. It is mostly used to clear the interupt
by the interupt handler. Again Bit# 15 states whether the corrsponding interupts will
be requested or cleared.

INTREQR returns which interupts are currently requested.

The following bit definitions relate to the 4 interupt control registers.

BIT# NAME LEVEL DESCRIPTION

15 SET/CLR determines if bits written with 1 are set or cleared
14 INTEN master interupt enable
13 EXTER 6 external interupt
12 DSKSYN 5 disk sync register (same as DSKSYNC)
11 RBF 5 serial port Receive Buffer Full
10 AUD3 4 audio channel 3 finished
09 AUD2 4 audio channel 2 finished
08 AUDI 4 audio channel 1 finished
07 AUD0 4 audio channel 0 finished
06 BLIT 3 blister finished
05 VERTB 3 start of vertical blank interupt
04 COPER 3 copper
03 PORTS 2 I/O ports and timers
02 SOFT 1 reserved for software initiated interupts
01 DSKBLK 1 disk block finished
00 TBE 1 serial port Transmit Buffer Empty

233

The following locations hold the address of the 68000 interupt handler code
in memory for each level of interupt.

LEVEL 68000 Address
6 $78
5 $74
4 $70
3 $6c
2 $68
1 $64

DMA Control

DMA stands for direct memory access. Chip mem can be accessed by display, blister,
copper, audio, sprites and diskdrive without using the 68000 processor. DMACON
enables user to lock out any of these from having direct memory access to chipmem.

As with INTENA bit 15 of DMACON signals whether the write opertaion should clear or
set the relevant bits of the DMA control.

DMACONR will not only return which channels have DMA access but has flags BBUSY
which return true if the blister is in operation and BZERO which return if the glitter has
generated any l's from it logic function (useful for collision detection etc.)

#DMACON=$96 ;DMA control write (dear or set)
#DMACONR=$02 ;DMA control read (and blister status) read

The following are the bits assigned to the two DMACON registers:

BIT# NAME DESCRIPTION
15 SET/CLR determines if bits written with 1 are set or cleared
14 BBUSY blister busy flag
13 BZERO blister logic zero
12 X
11 X
10 BLTPRI "blister nasty" signals blister has DMA priority over CPU
09 DMAEN enable all DMA below
08 BPLEN BitPlane DMA enable
07 COPEN Copper DMA enable
06 BLTEN glitter DMA enable
05 SPREN Sprite DMA enable
04 DSKEN Disk DMA enable
03 AUD3EN Audio channel 3 DMA enable
02 AUD2EN Audio channel 2 DMA enable

234

01 AUD1EN Audio channel 1 DMA enable
00 AUD0EN Audio channel 0 DMA enable

Amiga ClAs

The Amiga has two 8520 Complex Interface Adapter (CIA) which handle most of the
Amiga I/O activities. Note that each register should be accessed as a byte and NOT
a word. The following is an address map of both Amiga CIAs.

CIA-AAddress Register b7 b6 b5 b4 b3 b2 b1 b0
$BFE001 pra FIR1 FIR0 RDY TK0 WPR0 CHNG LED OVL
$BFE101 prb Parallel Port
$BFE201 ddra Direction for Port A (1=output)
$BFE301 ddrb Direction for Port B (1=output)
$BFE401 talo Timer A High Byte
$BFE501 tahi Timer A High Byte
$BFE601 thlo Timer B Low Byte
$BFE701 tbhi Timer B High Byte
$BFE801 todlo 50/60 Hz Event Counter bits 7-0
$BFE901 todmid 50/60 Hz Event Counter bits 15-8
$BFEA01 todhi 50/60 Hz Event Counter bits 23-16
$BFEB01 not used
$BFEC01 sdr Serial Data Register (connected to keyboard)
$BFED01 icr Interrupt Control Register
$BFEE01 cra Control Register A
$BFEF01 crb Control Register B

CIA-BAddress Register b7 b6 b5 b4 b3 b2 b1 b0
$BFD000 pra DTR RTS CD CTS DSR SEL POUT BUSY
$BFD100 prb MTR SEL3 SEL2 SEL1 SEL0 SIDE DIR STEP
$BFD200 ddra Direction for Port A (1=output)
$BFD300 ddrb Direction for Port B (1=output)
$BFD400 talo Timer A High Byte
$BFD500 tahi Timer A High Byte
$BFD600 tblo Timer B Low Byte
$BFD700 tbhi Timer B High Byte
$BFD800 todlo Horizontal Sync Event Counter bits 7-0
$BFD900 todmid Horizontal Sync Event Counter bits 15-8
$BFDA00 todhi Horizontal Sync Event Counter bits 23-16
$BFDB00 not used
$BFDC00 sdr Serial Data Register (connected to keyboard)
$BFDD00 icr Interrupt Control Register
$BFDE00 cra Control Register P
$BFDF00 crb Control Register E

235

APPENDIX 4: 68000 ASSEMBLY LANGUAGE

Although Blitz2 is a BASIC compiler, it also has an 'inline assembler' and can be used
as a fully fledged assembler. Assembly language is the language of the microprocessor,
in the case of the Amiga, the 68000 microprocessor.

The following is a brief description of the Motorola 68000 microprocessor and its
instruction set, for more information we recommend the data books published by
Motorola themselves as the best source of reference material.

Registers

The 68000 has 16 internal registers, these are like high speed variables each capable
of storing a long word (32 bits). The 8 data registers are mostly used for calculations
while the 8 address registers are mostly used for pointing to locations in memory.

The registers are named D0-D7 and A0-A7. The 68000 also has several specialised
registers, the program counter (PC) and the status register (SR) The program counter
points to the current instruction that the microprocessor is executing, while the status
register is a bunch of flags with various meanings.

Addressing

The main job of the microprocessor is to read information from memory, perform a
calculation and then write the result back to memory. For the processor to access
memory it has to generate a memory address for the location it wishes to access (read
or write to) The following are the different ways the 68000 can generate addresses.
Register Direct: MOVE d1,d0 The actual value in the register d1 is copied into d0

Address Register Indirect: MOVE (a0),d0 a0 is a pointer to somewhere in memory.
The value at this location is copied into the register d0.

Address Register Indirect with Postincrement: MOVE (a0)+,d0 The value at the
location pointed to by a0 is copied into the register d0, then a0 is incremented so it
points to the next memory location.

Address Register Indirect with Predecrement: MOVE -(a0),d0 a0 is first
decremented to point to the memory location before the one it currently points to
then the value at the new memory location is copied into d0.

Address Register Indirect with Displacement: MOVE 16(a0),d0 Memory location
located 16 bytes after that which is pointed to by address register a0 is copied to d0.

Address Register Indirect with Index: MOVE 16(a0,d1),d0 The memory location

236

is calculated by adding the contents of a0 with d1 plus 16.

Absolute Address: MOVE $dff'096,d0 The memory location $dff'096 is used.

Program Counter with Displacement: MOVE label(pc),d0 This is the same as
absolute addressing but because the memory address is an offset from the
program counter (no bigger than 32000 bytes) it is MUCH quicker.

Program Counter with Index: MOVE label(pc,d1),d0 The address is calulated
as the location of label plus the contents of data register d1.

Immediate Data: MOVE #20,d0 The value 20 is moved to the data register.

Program Flow

As mentioned previously the microprocessor has a special register known as the
program counter that points to the next instruction to be executed. By changing the
value in the program counter a 'goto' can be performed. The JMP instruction load the
program counter with a new value, it supports most of the addressing modes.

A branch is a program counter relative form of the JMP instruction. Branches can also
be performed on certain conditions such as BCC which will only cause the program
flow to change if the Carry flag in the status register is currently set.

A 'Gosub' can be performed using the JSR and BSR commands. The current value of the
program counter is remembered on the stack before the jump or branch is performed.
The RTS command is used to return to the original program location.
The Stack

The Amiga sets aside a certain amount of memory for each task known as a stack.
The address register A7 is used to point to the stack and should never be used as a
general purpose address register.

The 68000 uses predicament addressing to push data onto the stack and
postincrement addressing to pull information off the stack.

JSR is the same as MOVE.I pc,-(a7) and then JMP

RTS is the same as MOVE.I (a7)+,pc

The stack can be used to temporarily store internal registers. To save and restore
all the 68000 registers the following code is often used

A Subroutine: MOVEM.I d0-d7/a0-a6,-(a7) ;push all register on stack ;main
subroutine code here which can stuff up registers without worrying

237

MOVEM.I (a7)+,d0-d7/a0-a6 ;pull registers off stack

RTS ;return from subroutine

Condition Flags

The status register is a special 68000 register that holds, besides other things
all the condition codes. The following are a list of the condition flags:

Code Name Meaning
N negative reflects the most significant bit of the result of the last operation.
Z zero is set if the result is zero, cleared otherwise.
C carry is set when an add, subtract or compare operation generate a carry
X extend is a mirror of the carry flag, however its not affected by

data movement.
V overflow is set when an arithmetic operation causes an overflow, a situation

where the operand is not large enough to represent the result.

Conditional Tests

Branches and Sets can be performed conditionally. The following is a list of the
possible conditions that can be tested before a branch or set is performed.

cc condition coding test

T true 0000 0
F false 0001 1
HI high 0010 not C & not Z
LS lowsam 0011 C I Z
CC carry clr 0100 not C
CS carry set 0101 C
NE not equal 0110 not Z
EQ equal 0111 Z
VC overflow clr 1000 not V
VS overflow set 1001 V
PL plus 1010 not N
MI minus 1011 N
GE greater equal 1100 N&V I notN¬V
LT less than 1101 N¬V I notN&V
GT greater than 1110 N&V¬Z I notN¬V¬C
LE less or equal 1111 Z I N¬V I notN&V

Operand Sizes

The 68000 can perform operations on bytes, words and long words. By adding a

238

suffix .b .w or .l to the opcode, the assembler knows which data size you wish to use, if
no suffix is present the word size is default. There is no speed increase using bytes
instead of words as the 68000 is a 16 bit microprocessor and so no overhead is needed
for 16 bit operations. However 32 bit long words do cause overhead with extra read and
write cycles needed to perform operations on a bus that can only handle 16 bits at time

The 68000 Instruction Set

The following is a brief description of the 68000 instruction set.

Included with each are the addressing mode combinations available with each opcode.
Their syntax are as follows:

 Dndata register
 Anaddress register
 Dy, Dxdata registers source & destination
 Rx,Ry register source & destination (data & address registers)
 <ea> effective address - a subset of addressing modes
 #<data> numeric constant

Special notes:

The address register operands ADDA, CMPA, MOVEA and SUBA are only word and
long word data sizes. The last'A'of the operand name is optional as it is with the
immediate operands ADDI, CMPI, MOVEI, SUBI, ORI, EORI and ANDI.

The ADDQ and SUBQ are quick forms of their immediate cousins. The immediate
data range is 1 to 8. The MOVEQ instruction has a data range of -128 to 127, the data
is sign extended to 32 bits, and long is the only data size available.

The <ea> denotes an effective address, not all addressing modes are available
with each effective address form of the instruction, as a rule program counter relative
addressing is only available for the source operand and not the destination.

The Blitz2 compiler will signal any illegal forms of the instruction during compile stage.

ABCD Add with extend using BCD
ABCD Dy,Dx
ABCD -(Ay),-(Ax)
ADD Add binary
ADD <ea>,Dn
ADD Dn,<ea>
ADDA <ea>,An
ADDI #<data>,<ea>
ADDO #<data>,<ea>

239

ADDX Add with Extend
ADDX Dy,Dx
ADDX -(Ay),-(Ax)
AND AND logical
AND <ea>,Dn
AND Dn,<ea>
ANDI #<data>,<ea>
ASL Arithmetic Shift Left
ASL Dx,Dy
ASL #<data>,Dy
ASL <ea>
ASR Arithmetic Shift Pight
ASR Dx,Dy
ASR #<data>,Dy
ASR <ea>
Bcc Branch Conditionally
Bcd <label>
BCHG Test a Bit & Change
BCHG Dn,<ea>
BCHG #<data>,<ea>
BCLR Test a Bit & Clear
BCLR Dn,<ea>
BCLR #<data>,<ea>
BRA Branch Always
BRA <label>
BSET Test a Bit & Set
BSET Dn,<ea>
BSET #<data>,<ea>
BTST Test a Bit

 BTST Dn,<ea>
 BTST #<data>,<ea>

CHK Check Register Against Bounds
 CHK <ea>,Dn

CLR Clear an Operand
 CLR <ea>

CMP Compare
 CMP <ea>,Dn
 CMPA <ea>,An
 CMPI #<data>,<ea>

CMPM Compare Memory
 CMPM (Ay)+,(Ax)+

DBcc Test Condition, Decrement, and Branch
 DBcc Dn,<Iabel>

DIVS Signed Divide
 DIVS <ea>,Dn Data

DIVU Unsigned Divide

240

 DIVU <ea>,Dn
EOR Exclusive OR Logical

 EOR Dn,<ea>
 EORI #<data>,<ea>

EXG Exchange Registers
 EXG Rx,Ry

EXT Sign Extend
 EXT Dn Data

ILLEGAL Illegal Instruction
 ILLEGAL

Jmp Jump
 JMP <ea>

JSR Jump to Subroutine
 JSR <ea>

LEA Load Effective Address
 LEA <ea>,An

LINK Link and Allocate
 LINK An,#<displacement>

LSL Logical Shift Left
 LSL Dx,Dy
 LSL #<daia>,Dy
 LSL <ea>

LSR Logical Shift Right
 LSP Dx,Dy
 LSR #<data>,Dy
 LSR <ea>

MOVE Move Data from Source to Destination
 MOVE <ea>,<ea>
 MOVEA <ea>,An
 MOVEO #<data>,Dn

MOVEM Move Multiple Registers
 MOVEM <register list>,<ea>
 MOVEM <ea>,<register llst>

MOVEP Move Paiipheral
 MOVEP <ea>,Dn

MULS Signed Multiply
 MULS <ea>,Dn

MULU Unsigned Multiply
 MULTJ <ea>,Dn

NBCD Negate Decimal with Extend
 NBCD <ea>

NEG Negate
 NEG <ea>

NEGX Negate with Extend
 NEGX <ea>

NOP No Operation

241

 NOP
NOT Logical Complement

 NOT <ea>
OR lnclusive OR Logical

 OR <ea>, Dn
 OR Dn,<ea>
 ORI #<data>,<ea>

PEA Push Effective Address
 PEA <ea>

RESET Reset External Device
 RESET

ROL Rotate Left (without Extend)
 ROL Dx,Dy
 ROL #<data>,Dn
 ROL <ea>

ROR Rotate Right (without Extend)
 ROR Dx,Dy
 ROR #<data>, Dn
 ROR <ea>

ROXL Rotate Left with Extend
 ROXL Dx,Dy
 ROXL #<data>,Dn
 ROXL <ea>

ROXR Rotate Right with Extend
 ROXR Dx,Dy
 ROXR #<data>, Dn
 ROXR <ea>

RTE Return from Exception
 RTE Data

RTR Return and Restore Condition Codes
 RTR

RTS Return from Subroutine
 RTS

SBCD Subtract Decimal with Extend
 SBCD Dy,Dx
 SBCD -(Ay),-(Ax)

Scc Set according to Condition
 Scc <ea>

STOP Load Status Register and Stop
 STOP #xxx

SUB Subtract Binary
 SUB <ea>,Dn
 SUB Dn,<ea>
 SUBA <ea>,An
 SUBI #<data>,<ea>
 SUBQ #<data>,<ea>

242

SUBX Subtract with Extend
 SUBX Dy,Dx
 SUBX -(Ay),-(Ax)

SWAP Swap Register Halves
 SWAP Dn

TAS Test & Set an Operand
 TAS <ea>

TRAP Trap
 TRAP #<vector>

TRAPV Trap an Overflow
 TRAPV

TST Test an Operand
 TST <ea>

UNLK Unlink
 UNLK An Data

PROBLEMS YOU MAY ENCOUNTER

Can't compile the program, there are ????'s instead of Blitz commands:
The program may be using a Blitz command from the third party libraries. you got the
large deflibs installed in your Blitz drawer? NB: Floppy users cannot install the large
deflibs file as there isn't enough room on their program disk.

Can't load resident: A few programs use resident files which are contained in the
blitzlibs archive. Hard Disk users have you un-archived the blitzlibs.lha file into the
correct drawer on your hard drive ? Have you added the assign for Blitzlibs: to your
startup sequence?
COMMAND INDEX

ACos 108 BitMapWindow 134 CloseScreen 162 DecodeSound 157
AGABlue 153 BitMaptoWindow174 CloseSerial 201Default 091
AGAGreen 153 BitPlanesBitMap 134 CloseWindow 173 DefaultlDCMP 165
AGAPalRGB 153 Blit 141 ClrErr 095 DefaultInput 101
AGARGB 153 BlitColl 146 Clrlnt 095 DefaultOutput 101
AGARed 153 BlitMode 142 Cls 135DeleteArgString 192
ALibJsr 118 BlitzKeys 129 CludgeBitMap 134 DeleteMsgPort 190
AMIGA 114 BlitzQualifier 129 ColSplit 124DeleteRexxMsg 190
ASLFileRequest$ 188 BlitzRepeat 130 Colour 132 Dim 096
ASLFontRequest 188 Block 146 CookieMode 142 Disable 181
ASLPathRequest$ 188 BlockScroll 146 CopLen 125 DiskBuffer 157
ASLScreenRequest188 Blue 153 CopLoc 124 DiskPlay 157
ASin 108 BorderPens 180 CopyBitMap 133 DispHeight 107
ASyncFade 154 Borders 180 CopyShape 139 Display 125
ATan 108 Box 135 Cos 108 DisplayAdjust 127

243

Abs 107 Boxf 135 CreateArgString 192 DisplayBitMap 127
AbsMouse 198 Buffer 144 CreateDisplay 126 DisplayControls 127
Activate 171 ButtonGroup 176 CreateMsgPort 189 DisplayDblScan 128
ActivateString 177 ButtonId 181 CreateRexxMsg 190 DisplayPalette 127
AddFirst 097 CursX 132 DisplayRGB 129
AddlDCMP 166 --------------- CursY 132 DisplayRainbow129
AddItem 097 CELSE 115 Cursor 169 DisplayScroll 129
AddLast 097 CEND 115 CustomColors 128 DisplaySprite 127
Addr 116 CERR 115 CustomCop 124 DisplayUser 129
AllocMem 119 CNIF 115 CustomSprites 128 DoColl 150
Asc 109 CSIF 115 CustomString 128 DoFade 154
AsmExit 118 Call 119 Cvi 110 DosBuffLen 105
AttachGTList 186 Case 091 Cvl 110DuplicatePalette167
AutoCookie 139 CaseSense 110/111 Cvq 110 --------------
-------------- CatchDosErrs 105 Cycle 154 EMouseX 172
BBlit 145 Centre$ 111 CyclePalette 152 EMouseY 172
BBlitMode 145 Chr$ 109 ------------- 137 EVEN 117
BLITZ 114 Circle 136 DCB 117 Edit 100
BLibJsr 118 Circlef 136 DEFTYPE 096 Edit$ 100
Bank 119 ClearList 096 Data 100 EditExit 170
BankSize 119 ClearRexxMsg 191 Date$ 112 EditFrom 170
BeepScreen 162 ClearString 178 DateFormat 112 Editat 170
Bin$ 109 ClickButton 198 Days 112 Else 090
BitMap 133 ClipBlit 146 DecodelLBM 134 Enable 181
BitMapInput 133 ClipBlitMode 146 DecodeMedModule159 End 090
BitMapOrigin 134 CloseEd 120 DecodePalette 152 End SetErr 095
BitMapOutput 131 CloseFile 103 DecodeShapes 141 End Macro 116

End Select 091 Free Palette 152 GetMedinstr 159 InnerWidth 172
End Function 093 Free Window 165 GetMedNote 159 Instr 110
End Setint 094 FreeBank 119 GetMedVolume 159 Int 107
End Statement 093 FreeFill 136 GetReg 117 InvMode 142
Endlf 090 FreeMacroKey 200 GetResultString 197 IsRexxMsg 197
Eof 104 FreeMem 119 GetRexxCommand196 ItemHit 168
EraseMode 142 FreeSlices 123 GetRexxResult() 196 ItemStackSize 098
ErrFail 095 FRomCLI 121 GetSuperBitMap 173 -------------------
Event 167 Function 093 GetaShape 139 JoyB 102
EventCode 174 Function Return093 GetaSprite 147 JoyR 102
EventQualifier 174 ------------------- Gosub 090 JoyX 101
EventWindow 167 GTBevelBox 187 Goto 089 JoyY 102
Exchange 096 GTButton 185 Green 153 JumpMed 159
ExecVersion 113 GTChangeList 187 -------------------- --------------------
Exists 105 GTCheckBox 185 HCos 108 KillFile 105
Exp 108 GTCycle 185 HPropBody 179 Kililtem 097
------------------- GTDisable 187 HPropPot 192 ---------------------

244

Fadeln 154 GTEnable 187 HSin 108 LCase$ 111
FadeOut 154 GTGadPtr 187 HTan 108 LSet$ 111
FadePalette 152 GTGetAttrs 187 Handle 139 Lastitem 098
FadeStatus 155 GTGetinteger 187 Hex$ 109 Left$ 109
False 106 GTGetString 187 HideScreen 162 Len 111
Fields 103 GTlnteger 185 Hours 113 Let 095
Filelnput 104 GTListView 185 ------------------ Line 135
FileOutput 104 GTMX 185 ILBMDepth 106 LoadAnim 137
FileRequest$ 101 GTNumber 185 ILBMHeight 106 LoadBank 119
FileSeek 104 GTPalette 185 ILBMlnfo 106 LoadBitMap 134
FillRexxMsg 190 GTScroller 185 ILBMViewMode 106 LoadBlizFont 131
Filter 158 GTSetAttrs 187 ILBMWidth 106 LoadFont 174
FindScreen 161 GTSetInteger 187 INCBIN 115 LoadMedModule 158
FirstItem 097 GTSetString 187 INCDIR 115 LoadModule 158
FloatMode 099 GTShape 186 INCLUDE 114 LoadPalette 151
FloodFill 136 GTSlider 185 If 090 LoadScreen 161
FlushBuffer 145 GTStatus 188 InFront 148 LoadShape 138
FlushEvents 167 GTString 186 InFrontB 148 LoadShapes 138
FlushQueue 144 GTTags 186 InFrontF 148 LoadSound 155
For 091 GTText 186 InitAnim 137 LoadSprites 148
Forever 092 GTToggle 188 InitBank 119 LoadTape 199
Format 099 GadgetBorder 180 InitCopList 125 Loc 105
Frac 107 GadgetHit 167 InitPalette 152 Locate 132
Frames 137 GadgetJam 177 InitShape 141 Lof 104
Free 116 GadgetPens 176 InitSound 156 Log 109
Free BitMap 133 GadgetStatus 181 Inkey$ 101 Log10 109
Free BlitzFont 131 GameB 102 InnerCls 169 LoopSound 156
Free Module 158 Get 104 InnerHeight 172
MButtons 168 PColl 150 RGB Colour 152 Scale 140
Macro 116 PalRGB 152 RSet$ 111 Screen
160
MacroKey 199 PaletteRange 155 RastPort 173 ScreenPens 162
MakeCookie 139 Par$ 120 RawKey 168 ScreenTags 162
MaxLen 096 ParPath$ 121 RawStatus 130 ScreensBitMap 134
Maximum 116 Peek 107/118 ReMap 136 Scroll 136
MenuChecked 183 PeekSound 157 Read 100 Secs 113
MenuColour 183 Peeks$ 119 ReadFile 103 Select 091
MenuGap 183 PhoneticSpeak 160 ReadMem 105 SelectMode 177
MenuHit 168 PlayBack 199 ReadSerial 201SendRexxCommand193
Menultem 182 PlayMed 158 ReadSerialMem 202 SerialEvent 202
MenuState 183 PlayModule 158 ReadSerialString201 SetBPLCON0 125
MenuTitle 181 PlayWait 199 Record 199 SetColl 149
Menus 171 Plot 135 RectsHit 151 SetCollHi 149
Mid$ 109 Point 135 Red 153 SetCollOdd 149
MidHandle 140 Pointer 130 Redraw 180 SetCycle 154
Mins 113 Poke 118 RelMouse 198 SetErr 095

245

Mki$ 110 Poly 136 Repeat 092 SetGadgetStatus176
Mkl$ 110 Polyf 137 Replace$ 110 SetHProp 179
Mkq$ 110 Pop 092 ReplyRexxMsg 196 Setlnt 094
Months 113 PopInput 101 ResetList 096 SetMedMask 159
Mouse 130 PopItem 098 ResetString 178 SetMedVolume 159
MouseArea 130 PopOutput 101 Restore 100 SetMenu 183
MouseButton 198 PositionSuperBitMap173 Return 090 SetPeriod 157
MouseWait 092 Previtem 096 RexxError() 198 SetSerialBuffer 201
MouseX 130 Print 099 RexxEvent 197 SetSerialLens 201
MouseXSpeed 131 Processor 113 Right$ 109 SetSerialParams 201
MouseY 131 PropGadget 178 Rnd 108 SetString 178
MouseYSpeed 131 Pushitem 098 Rotate 141 SetVProp 179
MoveScreen 162 Put 104 RunerrsOff123 116 SetVoice 159
-------------------- PutReg 117 RunerrsOn123 116 Sgn 108
NEWTYPE 096PutSuperBitMap173 ------------------- ShapeGadget 177
NPrint 099 -------------------- SBlit 145 ShapeHeight 139
NTSC 106 QAMIGA 114 SBlitMode 145 Shapeltem 182
NewPaletteMode152 QAbs 107 SColl 150 ShapeSpriteHit 150
Next 092 QAngle 109 SMouseX 161 ShapeSub 183
NextFrame 137 QBlit 144 SMouseY 161 ShapeWidth 139
NextItem 097 QBlitMode 144 SaveBank 119 ShapesBitMap 134
NoCli 121 QFrac 107 SaveBitmap 134 ShapesHit 150
NumDays 112 QLimit 107 SavePalette 152 Shared 093
NumPars 120 QWrap 108 SaveScreen 161 Show 123
------------------- Qualifier 168 SaveShape 138 ShowB 124
On 090 Queue 143 SaveShapes 138 ShowBitMap 163
OpenFile 103 QuickPlay 199 SaveSprites 148 ShowBlitz 124
OpenSerial 200 QuietTrap 199 SaveTape 199 ShowF 124

246

ShowPalette 151 Translate$ 160 WLocate 172
ShowScreen 161 True 106 WMouseX 171
ShowSprite 147 Type 199 WMouseY 171
ShowStencil 145 ------------------ WMove 171
Sin 108 UCase$ 111 WPlot 168
SizeLimits 173 USED 116 WPointer 171
SizeOf 096 USEPATH 114 WPrintScroll 173
Slice 121 UStr$ 112 WScroll 169
SolidMode 143 UnBuffer 145 WSize 171
Sort 098 UnLeft$ 111 WTitle 173
SortDown 098 UnQueue 144 WTopOff 173
SortList 098 UnRight$ 111 Wait 197
SortUp 098 Until 092 WaitEvent 166
Sound 155 Use 116 WbToScreen 161
SoundData 157 Use BitMap 133 WeekDay 113
Speak 159 Use BlitzFont 131 Wend 091
SpriteMode 149 Use Palette 151 While 091
SpritesHit 150 Use Slice 123 Window 163
Sqr 109 Use Window 165 WindowFont 170
StartMedModule 158 -------------------- WindowHeight 172
Statement 093 VPos 107 WindowInput 165
Statement Return 093 VPropBody 180 WindowOutput 165
Stencil 145 VPropPot 179 WindowTags 174
Stop 090 VWait 092 WindowWidth 172
StopCycle 154 Val 112 WindowX 172
StopMed 158 ViewPort 162 WindowY 172
StopModule 158 VoiceLoc 160 WriteFile 103
Str$ 112 Volume 156 WriteMem 105
String$ 109 ------------------- WriteSerial 201
StringGadget 177 WBDepth 113 WriteSerialMem 202
StringText$ 177 WBHeight 113 WriteSerialString 201
StripLead$ 111 WBStartup 120 ---------------------
StripTrail$ 111 WBViewMode 113 XFlip 140
SubHit 168 WBWidth 113 XINCLUDE 115
SubIDCMP 166 WBlit 174 XStatus 199
Subitem 182 WBox 168 YFlip 140
SubitemOff 183 WCircle 169 Years 113
SysJsr 117 WCls 169
SystemDate 112 WColour 170
 --------------------- WCursX 172
Tan 108 WCursY 172
TapeTrap 199 WEllipse 169
TextGadget 176 WJam 170
Toggle 181 WLeftOff 173
TokeJsr 118 WLine 169

247

